MakeItFrom.com
Menu (ESC)

C46500 Brass vs. N08028 Stainless Steel

C46500 brass belongs to the copper alloys classification, while N08028 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C46500 brass and the bottom bar is N08028 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
200
Elongation at Break, % 18 to 50
45
Poisson's Ratio 0.31
0.28
Rockwell B Hardness 55 to 95
80
Shear Modulus, GPa 40
80
Shear Strength, MPa 280 to 380
400
Tensile Strength: Ultimate (UTS), MPa 380 to 610
570
Tensile Strength: Yield (Proof), MPa 190 to 490
240

Thermal Properties

Latent Heat of Fusion, J/g 170
320
Maximum Temperature: Mechanical, °C 120
1100
Melting Completion (Liquidus), °C 900
1420
Melting Onset (Solidus), °C 890
1370
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 120
12
Thermal Expansion, µm/m-K 21
16

Otherwise Unclassified Properties

Base Metal Price, % relative 23
37
Density, g/cm3 8.0
8.1
Embodied Carbon, kg CO2/kg material 2.7
6.4
Embodied Energy, MJ/kg 47
89
Embodied Water, L/kg 330
240

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 99 to 160
210
Resilience: Unit (Modulus of Resilience), kJ/m3 170 to 1170
140
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 20
24
Strength to Weight: Axial, points 13 to 21
19
Strength to Weight: Bending, points 15 to 20
19
Thermal Diffusivity, mm2/s 38
3.2
Thermal Shock Resistance, points 13 to 20
12

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Arsenic (As), % 0.020 to 0.060
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
26 to 28
Copper (Cu), % 59 to 62
0.6 to 1.4
Iron (Fe), % 0 to 0.1
29 to 40.4
Lead (Pb), % 0 to 0.2
0
Manganese (Mn), % 0
0 to 2.5
Molybdenum (Mo), % 0
3.0 to 4.0
Nickel (Ni), % 0
30 to 34
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0.5 to 1.0
0
Zinc (Zn), % 36.2 to 40.5
0
Residuals, % 0 to 0.4
0