MakeItFrom.com
Menu (ESC)

C46500 Brass vs. S21800 Stainless Steel

C46500 brass belongs to the copper alloys classification, while S21800 stainless steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown.

For each property being compared, the top bar is C46500 brass and the bottom bar is S21800 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
190
Elongation at Break, % 18 to 50
40
Poisson's Ratio 0.31
0.28
Rockwell B Hardness 55 to 95
88
Shear Modulus, GPa 40
75
Shear Strength, MPa 280 to 380
510
Tensile Strength: Ultimate (UTS), MPa 380 to 610
740
Tensile Strength: Yield (Proof), MPa 190 to 490
390

Thermal Properties

Latent Heat of Fusion, J/g 170
340
Maximum Temperature: Mechanical, °C 120
900
Melting Completion (Liquidus), °C 900
1360
Melting Onset (Solidus), °C 890
1310
Specific Heat Capacity, J/kg-K 380
500
Thermal Expansion, µm/m-K 21
16

Otherwise Unclassified Properties

Base Metal Price, % relative 23
15
Density, g/cm3 8.0
7.5
Embodied Carbon, kg CO2/kg material 2.7
3.1
Embodied Energy, MJ/kg 47
45
Embodied Water, L/kg 330
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 99 to 160
250
Resilience: Unit (Modulus of Resilience), kJ/m3 170 to 1170
390
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 20
26
Strength to Weight: Axial, points 13 to 21
27
Strength to Weight: Bending, points 15 to 20
24
Thermal Shock Resistance, points 13 to 20
17

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Arsenic (As), % 0.020 to 0.060
0
Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0
16 to 18
Copper (Cu), % 59 to 62
0
Iron (Fe), % 0 to 0.1
59.1 to 65.4
Lead (Pb), % 0 to 0.2
0
Manganese (Mn), % 0
7.0 to 9.0
Nickel (Ni), % 0
8.0 to 9.0
Nitrogen (N), % 0
0.080 to 0.18
Phosphorus (P), % 0
0 to 0.060
Silicon (Si), % 0
3.5 to 4.5
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0.5 to 1.0
0
Zinc (Zn), % 36.2 to 40.5
0
Residuals, % 0 to 0.4
0