MakeItFrom.com
Menu (ESC)

C46500 Brass vs. S44535 Stainless Steel

C46500 brass belongs to the copper alloys classification, while S44535 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C46500 brass and the bottom bar is S44535 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
200
Elongation at Break, % 18 to 50
28
Poisson's Ratio 0.31
0.27
Rockwell B Hardness 55 to 95
77
Shear Modulus, GPa 40
78
Shear Strength, MPa 280 to 380
290
Tensile Strength: Ultimate (UTS), MPa 380 to 610
450
Tensile Strength: Yield (Proof), MPa 190 to 490
290

Thermal Properties

Latent Heat of Fusion, J/g 170
290
Maximum Temperature: Mechanical, °C 120
1000
Melting Completion (Liquidus), °C 900
1430
Melting Onset (Solidus), °C 890
1390
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 120
21
Thermal Expansion, µm/m-K 21
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
2.6
Electrical Conductivity: Equal Weight (Specific), % IACS 29
3.1

Otherwise Unclassified Properties

Base Metal Price, % relative 23
11
Density, g/cm3 8.0
7.7
Embodied Carbon, kg CO2/kg material 2.7
2.4
Embodied Energy, MJ/kg 47
34
Embodied Water, L/kg 330
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 99 to 160
110
Resilience: Unit (Modulus of Resilience), kJ/m3 170 to 1170
200
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 13 to 21
16
Strength to Weight: Bending, points 15 to 20
17
Thermal Diffusivity, mm2/s 38
5.6
Thermal Shock Resistance, points 13 to 20
15

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
0 to 0.5
Arsenic (As), % 0.020 to 0.060
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
20 to 24
Copper (Cu), % 59 to 62
0 to 0.5
Iron (Fe), % 0 to 0.1
73.2 to 79.6
Lanthanum (La), % 0
0.040 to 0.2
Lead (Pb), % 0 to 0.2
0
Manganese (Mn), % 0
0.3 to 0.8
Phosphorus (P), % 0
0 to 0.050
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.020
Tin (Sn), % 0.5 to 1.0
0
Titanium (Ti), % 0
0.030 to 0.2
Zinc (Zn), % 36.2 to 40.5
0
Residuals, % 0 to 0.4
0