MakeItFrom.com
Menu (ESC)

C47000 Brass vs. 2124 Aluminum

C47000 brass belongs to the copper alloys classification, while 2124 aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C47000 brass and the bottom bar is 2124 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
71
Elongation at Break, % 36
5.7
Poisson's Ratio 0.3
0.33
Shear Modulus, GPa 40
27
Tensile Strength: Ultimate (UTS), MPa 380
490
Tensile Strength: Yield (Proof), MPa 150
430

Thermal Properties

Latent Heat of Fusion, J/g 170
390
Maximum Temperature: Mechanical, °C 120
190
Melting Completion (Liquidus), °C 900
640
Melting Onset (Solidus), °C 890
500
Specific Heat Capacity, J/kg-K 390
880
Thermal Conductivity, W/m-K 120
150
Thermal Expansion, µm/m-K 21
23

Otherwise Unclassified Properties

Base Metal Price, % relative 23
10
Density, g/cm3 8.0
3.0
Embodied Carbon, kg CO2/kg material 2.7
8.2
Embodied Energy, MJ/kg 47
150
Embodied Water, L/kg 330
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
27
Resilience: Unit (Modulus of Resilience), kJ/m3 100
1290
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 20
46
Strength to Weight: Axial, points 13
45
Strength to Weight: Bending, points 15
46
Thermal Diffusivity, mm2/s 38
58
Thermal Shock Resistance, points 13
21

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.010
91.3 to 94.7
Chromium (Cr), % 0
0 to 0.1
Copper (Cu), % 57 to 61
3.8 to 4.9
Iron (Fe), % 0
0 to 0.3
Lead (Pb), % 0 to 0.050
0
Magnesium (Mg), % 0
1.2 to 1.8
Manganese (Mn), % 0
0.3 to 0.9
Silicon (Si), % 0
0 to 0.2
Tin (Sn), % 0.25 to 1.0
0
Titanium (Ti), % 0
0 to 0.15
Zinc (Zn), % 37.5 to 42.8
0 to 0.25
Residuals, % 0 to 0.4
0 to 0.15