MakeItFrom.com
Menu (ESC)

C47000 Brass vs. EN 1.6220 Steel

C47000 brass belongs to the copper alloys classification, while EN 1.6220 steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C47000 brass and the bottom bar is EN 1.6220 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
190
Elongation at Break, % 36
23 to 25
Poisson's Ratio 0.3
0.29
Shear Modulus, GPa 40
73
Tensile Strength: Ultimate (UTS), MPa 380
550 to 580
Tensile Strength: Yield (Proof), MPa 150
340

Thermal Properties

Latent Heat of Fusion, J/g 170
250
Maximum Temperature: Mechanical, °C 120
400
Melting Completion (Liquidus), °C 900
1460
Melting Onset (Solidus), °C 890
1420
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 120
52
Thermal Expansion, µm/m-K 21
13

Otherwise Unclassified Properties

Base Metal Price, % relative 23
2.1
Density, g/cm3 8.0
7.8
Embodied Carbon, kg CO2/kg material 2.7
1.5
Embodied Energy, MJ/kg 47
19
Embodied Water, L/kg 330
48

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
110 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 100
300 to 310
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 20
24
Strength to Weight: Axial, points 13
19 to 20
Strength to Weight: Bending, points 15
19 to 20
Thermal Diffusivity, mm2/s 38
14
Thermal Shock Resistance, points 13
16 to 17

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.010
0
Carbon (C), % 0
0.17 to 0.23
Copper (Cu), % 57 to 61
0
Iron (Fe), % 0
96.7 to 98.8
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
1.0 to 1.6
Nickel (Ni), % 0
0 to 0.8
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0
0 to 0.6
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0.25 to 1.0
0
Zinc (Zn), % 37.5 to 42.8
0
Residuals, % 0 to 0.4
0