MakeItFrom.com
Menu (ESC)

C47000 Brass vs. CC767S Brass

Both C47000 brass and CC767S brass are copper alloys. Both are furnished in the as-fabricated (no temper or treatment) condition. They have a very high 96% of their average alloy composition in common. There are 26 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C47000 brass and the bottom bar is CC767S brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
110
Elongation at Break, % 36
34
Poisson's Ratio 0.3
0.31
Shear Modulus, GPa 40
40
Tensile Strength: Ultimate (UTS), MPa 380
430
Tensile Strength: Yield (Proof), MPa 150
150

Thermal Properties

Latent Heat of Fusion, J/g 170
180
Maximum Temperature: Mechanical, °C 120
120
Melting Completion (Liquidus), °C 900
840
Melting Onset (Solidus), °C 890
790
Specific Heat Capacity, J/kg-K 390
390
Thermal Conductivity, W/m-K 120
110
Thermal Expansion, µm/m-K 21
21

Otherwise Unclassified Properties

Base Metal Price, % relative 23
23
Density, g/cm3 8.0
8.0
Embodied Carbon, kg CO2/kg material 2.7
2.7
Embodied Energy, MJ/kg 47
47
Embodied Water, L/kg 330
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
110
Resilience: Unit (Modulus of Resilience), kJ/m3 100
100
Stiffness to Weight: Axial, points 7.2
7.3
Stiffness to Weight: Bending, points 20
20
Strength to Weight: Axial, points 13
15
Strength to Weight: Bending, points 15
16
Thermal Diffusivity, mm2/s 38
34
Thermal Shock Resistance, points 13
14

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.010
0.1 to 0.8
Copper (Cu), % 57 to 61
58 to 64
Iron (Fe), % 0
0 to 0.5
Lead (Pb), % 0 to 0.050
0 to 0.1
Manganese (Mn), % 0
0 to 0.5
Nickel (Ni), % 0
0 to 1.0
Silicon (Si), % 0
0 to 0.2
Tin (Sn), % 0.25 to 1.0
0 to 0.1
Zinc (Zn), % 37.5 to 42.8
32.8 to 41.9
Residuals, % 0 to 0.4
0