MakeItFrom.com
Menu (ESC)

C47000 Brass vs. Grade 13 Titanium

C47000 brass belongs to the copper alloys classification, while grade 13 titanium belongs to the titanium alloys. There are 26 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C47000 brass and the bottom bar is grade 13 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
110
Elongation at Break, % 36
27
Poisson's Ratio 0.3
0.32
Shear Modulus, GPa 40
41
Tensile Strength: Ultimate (UTS), MPa 380
310
Tensile Strength: Yield (Proof), MPa 150
190

Thermal Properties

Latent Heat of Fusion, J/g 170
420
Maximum Temperature: Mechanical, °C 120
320
Melting Completion (Liquidus), °C 900
1660
Melting Onset (Solidus), °C 890
1610
Specific Heat Capacity, J/kg-K 390
540
Thermal Conductivity, W/m-K 120
22
Thermal Expansion, µm/m-K 21
8.7

Otherwise Unclassified Properties

Base Metal Price, % relative 23
37
Density, g/cm3 8.0
4.5
Embodied Carbon, kg CO2/kg material 2.7
32
Embodied Energy, MJ/kg 47
520
Embodied Water, L/kg 330
210

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
73
Resilience: Unit (Modulus of Resilience), kJ/m3 100
180
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 20
35
Strength to Weight: Axial, points 13
19
Strength to Weight: Bending, points 15
22
Thermal Diffusivity, mm2/s 38
8.9
Thermal Shock Resistance, points 13
24

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.010
0
Carbon (C), % 0
0 to 0.080
Copper (Cu), % 57 to 61
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0
0 to 0.2
Lead (Pb), % 0 to 0.050
0
Nickel (Ni), % 0
0.4 to 0.6
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.1
Ruthenium (Ru), % 0
0.040 to 0.060
Tin (Sn), % 0.25 to 1.0
0
Titanium (Ti), % 0
98.5 to 99.56
Zinc (Zn), % 37.5 to 42.8
0
Residuals, % 0 to 0.4
0 to 0.4