MakeItFrom.com
Menu (ESC)

C47940 Brass vs. 772.0 Aluminum

C47940 brass belongs to the copper alloys classification, while 772.0 aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C47940 brass and the bottom bar is 772.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
69
Elongation at Break, % 14 to 34
6.3 to 8.4
Poisson's Ratio 0.31
0.32
Shear Modulus, GPa 40
26
Tensile Strength: Ultimate (UTS), MPa 380 to 520
260 to 320
Tensile Strength: Yield (Proof), MPa 160 to 390
220 to 250

Thermal Properties

Latent Heat of Fusion, J/g 170
380
Maximum Temperature: Mechanical, °C 130
180
Melting Completion (Liquidus), °C 850
630
Melting Onset (Solidus), °C 800
580
Specific Heat Capacity, J/kg-K 380
870
Thermal Conductivity, W/m-K 110
150
Thermal Expansion, µm/m-K 20
24

Otherwise Unclassified Properties

Base Metal Price, % relative 25
9.5
Density, g/cm3 8.2
3.0
Embodied Carbon, kg CO2/kg material 2.8
8.0
Embodied Energy, MJ/kg 47
150
Embodied Water, L/kg 330
1140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 68 to 100
16 to 25
Resilience: Unit (Modulus of Resilience), kJ/m3 120 to 740
350 to 430
Stiffness to Weight: Axial, points 7.1
13
Stiffness to Weight: Bending, points 19
46
Strength to Weight: Axial, points 13 to 17
25 to 31
Strength to Weight: Bending, points 14 to 17
31 to 36
Thermal Diffusivity, mm2/s 36
58
Thermal Shock Resistance, points 13 to 17
11 to 14

Alloy Composition

Aluminum (Al), % 0
91.2 to 93.2
Chromium (Cr), % 0
0.060 to 0.2
Copper (Cu), % 63 to 66
0 to 0.1
Iron (Fe), % 0.1 to 1.0
0 to 0.15
Lead (Pb), % 1.0 to 2.0
0
Magnesium (Mg), % 0
0.6 to 0.8
Manganese (Mn), % 0
0 to 0.1
Nickel (Ni), % 0.1 to 0.5
0
Silicon (Si), % 0
0 to 0.15
Tin (Sn), % 1.2 to 2.0
0
Titanium (Ti), % 0
0.1 to 0.2
Zinc (Zn), % 28.1 to 34.6
6.0 to 7.0
Residuals, % 0
0 to 0.15