MakeItFrom.com
Menu (ESC)

C47940 Brass vs. 8090 Aluminum

C47940 brass belongs to the copper alloys classification, while 8090 aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C47940 brass and the bottom bar is 8090 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
67
Elongation at Break, % 14 to 34
3.5 to 13
Poisson's Ratio 0.31
0.33
Shear Modulus, GPa 40
25
Tensile Strength: Ultimate (UTS), MPa 380 to 520
340 to 490
Tensile Strength: Yield (Proof), MPa 160 to 390
210 to 420

Thermal Properties

Latent Heat of Fusion, J/g 170
400
Maximum Temperature: Mechanical, °C 130
190
Melting Completion (Liquidus), °C 850
660
Melting Onset (Solidus), °C 800
600
Specific Heat Capacity, J/kg-K 380
960
Thermal Conductivity, W/m-K 110
95 to 160
Thermal Expansion, µm/m-K 20
24

Otherwise Unclassified Properties

Base Metal Price, % relative 25
18
Density, g/cm3 8.2
2.7
Embodied Carbon, kg CO2/kg material 2.8
8.6
Embodied Energy, MJ/kg 47
170
Embodied Water, L/kg 330
1160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 68 to 100
16 to 41
Resilience: Unit (Modulus of Resilience), kJ/m3 120 to 740
340 to 1330
Stiffness to Weight: Axial, points 7.1
14
Stiffness to Weight: Bending, points 19
50
Strength to Weight: Axial, points 13 to 17
34 to 49
Strength to Weight: Bending, points 14 to 17
39 to 50
Thermal Diffusivity, mm2/s 36
36 to 60
Thermal Shock Resistance, points 13 to 17
15 to 22

Alloy Composition

Aluminum (Al), % 0
93 to 98.4
Chromium (Cr), % 0
0 to 0.1
Copper (Cu), % 63 to 66
1.0 to 1.6
Iron (Fe), % 0.1 to 1.0
0 to 0.3
Lead (Pb), % 1.0 to 2.0
0
Lithium (Li), % 0
2.2 to 2.7
Magnesium (Mg), % 0
0.6 to 1.3
Manganese (Mn), % 0
0 to 0.1
Nickel (Ni), % 0.1 to 0.5
0
Silicon (Si), % 0
0 to 0.2
Tin (Sn), % 1.2 to 2.0
0
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 28.1 to 34.6
0 to 0.25
Zirconium (Zr), % 0
0.040 to 0.16
Residuals, % 0
0 to 0.15