MakeItFrom.com
Menu (ESC)

C47940 Brass vs. ASTM A387 Grade 2 Steel

C47940 brass belongs to the copper alloys classification, while ASTM A387 grade 2 steel belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C47940 brass and the bottom bar is ASTM A387 grade 2 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
190
Elongation at Break, % 14 to 34
25
Poisson's Ratio 0.31
0.29
Shear Modulus, GPa 40
73
Shear Strength, MPa 250 to 310
300 to 350
Tensile Strength: Ultimate (UTS), MPa 380 to 520
470 to 550
Tensile Strength: Yield (Proof), MPa 160 to 390
260 to 350

Thermal Properties

Latent Heat of Fusion, J/g 170
250
Maximum Temperature: Mechanical, °C 130
420
Melting Completion (Liquidus), °C 850
1470
Melting Onset (Solidus), °C 800
1420
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 110
45
Thermal Expansion, µm/m-K 20
13

Otherwise Unclassified Properties

Base Metal Price, % relative 25
2.6
Density, g/cm3 8.2
7.9
Embodied Carbon, kg CO2/kg material 2.8
1.6
Embodied Energy, MJ/kg 47
20
Embodied Water, L/kg 330
50

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 68 to 100
98 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 120 to 740
180 to 320
Stiffness to Weight: Axial, points 7.1
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 13 to 17
16 to 20
Strength to Weight: Bending, points 14 to 17
17 to 19
Thermal Diffusivity, mm2/s 36
12
Thermal Shock Resistance, points 13 to 17
14 to 16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0.050 to 0.21
Chromium (Cr), % 0
0.5 to 0.8
Copper (Cu), % 63 to 66
0
Iron (Fe), % 0.1 to 1.0
97.1 to 98.3
Lead (Pb), % 1.0 to 2.0
0
Manganese (Mn), % 0
0.55 to 0.8
Molybdenum (Mo), % 0
0.45 to 0.6
Nickel (Ni), % 0.1 to 0.5
0
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0
0.15 to 0.4
Sulfur (S), % 0
0 to 0.025
Tin (Sn), % 1.2 to 2.0
0
Zinc (Zn), % 28.1 to 34.6
0
Residuals, % 0 to 0.4
0