MakeItFrom.com
Menu (ESC)

C47940 Brass vs. AWS ER90S-B9

C47940 brass belongs to the copper alloys classification, while AWS ER90S-B9 belongs to the iron alloys. There are 25 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C47940 brass and the bottom bar is AWS ER90S-B9.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
190
Elongation at Break, % 14 to 34
18
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 40
75
Tensile Strength: Ultimate (UTS), MPa 380 to 520
690
Tensile Strength: Yield (Proof), MPa 160 to 390
470

Thermal Properties

Latent Heat of Fusion, J/g 170
270
Melting Completion (Liquidus), °C 850
1450
Melting Onset (Solidus), °C 800
1410
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 110
25
Thermal Expansion, µm/m-K 20
13

Otherwise Unclassified Properties

Base Metal Price, % relative 25
7.0
Density, g/cm3 8.2
7.8
Embodied Carbon, kg CO2/kg material 2.8
2.6
Embodied Energy, MJ/kg 47
37
Embodied Water, L/kg 330
91

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 68 to 100
110
Resilience: Unit (Modulus of Resilience), kJ/m3 120 to 740
570
Stiffness to Weight: Axial, points 7.1
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 13 to 17
25
Strength to Weight: Bending, points 14 to 17
22
Thermal Diffusivity, mm2/s 36
6.9
Thermal Shock Resistance, points 13 to 17
19

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
0 to 0.040
Carbon (C), % 0
0.070 to 0.13
Chromium (Cr), % 0
8.0 to 10.5
Copper (Cu), % 63 to 66
0 to 0.2
Iron (Fe), % 0.1 to 1.0
84.4 to 90.7
Lead (Pb), % 1.0 to 2.0
0
Manganese (Mn), % 0
0 to 1.2
Molybdenum (Mo), % 0
0.85 to 1.2
Nickel (Ni), % 0.1 to 0.5
0 to 0.8
Niobium (Nb), % 0
0.020 to 0.1
Nitrogen (N), % 0
0.030 to 0.070
Phosphorus (P), % 0
0 to 0.010
Silicon (Si), % 0
0.15 to 0.5
Sulfur (S), % 0
0 to 0.010
Tin (Sn), % 1.2 to 2.0
0
Vanadium (V), % 0
0.15 to 0.3
Zinc (Zn), % 28.1 to 34.6
0
Residuals, % 0 to 0.4
0 to 0.5