MakeItFrom.com
Menu (ESC)

C47940 Brass vs. SAE-AISI 4320 Steel

C47940 brass belongs to the copper alloys classification, while SAE-AISI 4320 steel belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C47940 brass and the bottom bar is SAE-AISI 4320 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
190
Elongation at Break, % 14 to 34
21 to 29
Poisson's Ratio 0.31
0.29
Shear Modulus, GPa 40
73
Shear Strength, MPa 250 to 310
370 to 500
Tensile Strength: Ultimate (UTS), MPa 380 to 520
570 to 790
Tensile Strength: Yield (Proof), MPa 160 to 390
430 to 460

Thermal Properties

Latent Heat of Fusion, J/g 170
250
Maximum Temperature: Mechanical, °C 130
420
Melting Completion (Liquidus), °C 850
1460
Melting Onset (Solidus), °C 800
1420
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 110
46
Thermal Expansion, µm/m-K 20
11

Otherwise Unclassified Properties

Base Metal Price, % relative 25
3.4
Density, g/cm3 8.2
7.9
Embodied Carbon, kg CO2/kg material 2.8
1.7
Embodied Energy, MJ/kg 47
22
Embodied Water, L/kg 330
52

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 68 to 100
140 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 120 to 740
480 to 560
Stiffness to Weight: Axial, points 7.1
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 13 to 17
20 to 28
Strength to Weight: Bending, points 14 to 17
19 to 24
Thermal Diffusivity, mm2/s 36
13
Thermal Shock Resistance, points 13 to 17
19 to 27

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0.17 to 0.22
Chromium (Cr), % 0
0.4 to 0.6
Copper (Cu), % 63 to 66
0
Iron (Fe), % 0.1 to 1.0
95.8 to 97
Lead (Pb), % 1.0 to 2.0
0
Manganese (Mn), % 0
0.45 to 0.65
Molybdenum (Mo), % 0
0.2 to 0.3
Nickel (Ni), % 0.1 to 0.5
1.7 to 2.0
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0
0.15 to 0.35
Sulfur (S), % 0
0 to 0.040
Tin (Sn), % 1.2 to 2.0
0
Zinc (Zn), % 28.1 to 34.6
0
Residuals, % 0 to 0.4
0