MakeItFrom.com
Menu (ESC)

C48500 Brass vs. 851.0 Aluminum

C48500 brass belongs to the copper alloys classification, while 851.0 aluminum belongs to the aluminum alloys. There are 25 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C48500 brass and the bottom bar is 851.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
69
Elongation at Break, % 13 to 40
3.9 to 9.1
Poisson's Ratio 0.31
0.33
Shear Modulus, GPa 39
26
Tensile Strength: Ultimate (UTS), MPa 400 to 500
130 to 140

Thermal Properties

Latent Heat of Fusion, J/g 170
410
Maximum Temperature: Mechanical, °C 120
180
Melting Completion (Liquidus), °C 900
630
Melting Onset (Solidus), °C 890
360
Specific Heat Capacity, J/kg-K 380
850
Thermal Conductivity, W/m-K 120
180
Thermal Expansion, µm/m-K 21
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
46
Electrical Conductivity: Equal Weight (Specific), % IACS 29
140

Otherwise Unclassified Properties

Base Metal Price, % relative 23
14
Density, g/cm3 8.1
3.1
Embodied Carbon, kg CO2/kg material 2.7
8.4
Embodied Energy, MJ/kg 46
160
Embodied Water, L/kg 330
1140

Common Calculations

Stiffness to Weight: Axial, points 7.1
13
Stiffness to Weight: Bending, points 19
45
Strength to Weight: Axial, points 14 to 17
12 to 13
Strength to Weight: Bending, points 15 to 17
19 to 20
Thermal Diffusivity, mm2/s 38
69
Thermal Shock Resistance, points 13 to 17
6.1 to 6.3

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
86.6 to 91.5
Copper (Cu), % 59 to 62
0.7 to 1.3
Iron (Fe), % 0 to 0.1
0 to 0.7
Lead (Pb), % 1.3 to 2.2
0
Magnesium (Mg), % 0
0 to 0.1
Manganese (Mn), % 0
0 to 0.1
Nickel (Ni), % 0
0.3 to 0.7
Silicon (Si), % 0
2.0 to 3.0
Tin (Sn), % 0.5 to 1.0
5.5 to 7.0
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 34.3 to 39.2
0
Residuals, % 0 to 0.4
0 to 0.3