MakeItFrom.com
Menu (ESC)

C48500 Brass vs. ASTM A182 Grade F5a

C48500 brass belongs to the copper alloys classification, while ASTM A182 grade F5a belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C48500 brass and the bottom bar is ASTM A182 grade F5a.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
190
Elongation at Break, % 13 to 40
25
Poisson's Ratio 0.31
0.29
Shear Modulus, GPa 39
74
Shear Strength, MPa 250 to 300
450
Tensile Strength: Ultimate (UTS), MPa 400 to 500
710
Tensile Strength: Yield (Proof), MPa 160 to 320
520

Thermal Properties

Latent Heat of Fusion, J/g 170
260
Maximum Temperature: Mechanical, °C 120
510
Melting Completion (Liquidus), °C 900
1460
Melting Onset (Solidus), °C 890
1420
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 120
40
Thermal Expansion, µm/m-K 21
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
8.2
Electrical Conductivity: Equal Weight (Specific), % IACS 29
9.4

Otherwise Unclassified Properties

Base Metal Price, % relative 23
4.5
Density, g/cm3 8.1
7.8
Embodied Carbon, kg CO2/kg material 2.7
1.8
Embodied Energy, MJ/kg 46
24
Embodied Water, L/kg 330
69

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 56 to 140
160
Resilience: Unit (Modulus of Resilience), kJ/m3 120 to 500
700
Stiffness to Weight: Axial, points 7.1
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 14 to 17
25
Strength to Weight: Bending, points 15 to 17
23
Thermal Diffusivity, mm2/s 38
11
Thermal Shock Resistance, points 13 to 17
20

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0 to 0.25
Chromium (Cr), % 0
4.0 to 6.0
Copper (Cu), % 59 to 62
0
Iron (Fe), % 0 to 0.1
91.4 to 95.6
Lead (Pb), % 1.3 to 2.2
0
Manganese (Mn), % 0
0 to 0.6
Molybdenum (Mo), % 0
0.44 to 0.65
Nickel (Ni), % 0
0 to 0.5
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0.5 to 1.0
0
Zinc (Zn), % 34.3 to 39.2
0
Residuals, % 0 to 0.4
0