MakeItFrom.com
Menu (ESC)

C48500 Brass vs. Nickel 80A

C48500 brass belongs to the copper alloys classification, while nickel 80A belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is C48500 brass and the bottom bar is nickel 80A.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
190
Elongation at Break, % 13 to 40
22
Poisson's Ratio 0.31
0.29
Shear Modulus, GPa 39
74
Shear Strength, MPa 250 to 300
660
Tensile Strength: Ultimate (UTS), MPa 400 to 500
1040
Tensile Strength: Yield (Proof), MPa 160 to 320
710

Thermal Properties

Latent Heat of Fusion, J/g 170
320
Maximum Temperature: Mechanical, °C 120
980
Melting Completion (Liquidus), °C 900
1360
Melting Onset (Solidus), °C 890
1310
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 120
11
Thermal Expansion, µm/m-K 21
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 29
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 23
55
Density, g/cm3 8.1
8.3
Embodied Carbon, kg CO2/kg material 2.7
9.8
Embodied Energy, MJ/kg 46
140
Embodied Water, L/kg 330
280

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 56 to 140
210
Resilience: Unit (Modulus of Resilience), kJ/m3 120 to 500
1300
Stiffness to Weight: Axial, points 7.1
13
Stiffness to Weight: Bending, points 19
23
Strength to Weight: Axial, points 14 to 17
35
Strength to Weight: Bending, points 15 to 17
27
Thermal Diffusivity, mm2/s 38
2.9
Thermal Shock Resistance, points 13 to 17
31

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
0.5 to 1.8
Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0
18 to 21
Copper (Cu), % 59 to 62
0
Iron (Fe), % 0 to 0.1
0 to 3.0
Lead (Pb), % 1.3 to 2.2
0
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 0
69.4 to 79.7
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0.5 to 1.0
0
Titanium (Ti), % 0
1.8 to 2.7
Zinc (Zn), % 34.3 to 39.2
0
Residuals, % 0 to 0.4
0