MakeItFrom.com
Menu (ESC)

C48500 Brass vs. SAE-AISI 1211 Steel

C48500 brass belongs to the copper alloys classification, while SAE-AISI 1211 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C48500 brass and the bottom bar is SAE-AISI 1211 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
190
Elongation at Break, % 13 to 40
11 to 29
Poisson's Ratio 0.31
0.29
Shear Modulus, GPa 39
73
Shear Strength, MPa 250 to 300
280 to 350
Tensile Strength: Ultimate (UTS), MPa 400 to 500
430 to 580
Tensile Strength: Yield (Proof), MPa 160 to 320
260 to 460

Thermal Properties

Latent Heat of Fusion, J/g 170
250
Maximum Temperature: Mechanical, °C 120
400
Melting Completion (Liquidus), °C 900
1460
Melting Onset (Solidus), °C 890
1420
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 120
52
Thermal Expansion, µm/m-K 21
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 29
8.0

Otherwise Unclassified Properties

Base Metal Price, % relative 23
1.8
Density, g/cm3 8.1
7.9
Embodied Carbon, kg CO2/kg material 2.7
1.4
Embodied Energy, MJ/kg 46
18
Embodied Water, L/kg 330
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 56 to 140
61 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 120 to 500
180 to 550
Stiffness to Weight: Axial, points 7.1
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 14 to 17
15 to 21
Strength to Weight: Bending, points 15 to 17
16 to 20
Thermal Diffusivity, mm2/s 38
14
Thermal Shock Resistance, points 13 to 17
14 to 18

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0 to 0.13
Copper (Cu), % 59 to 62
0
Iron (Fe), % 0 to 0.1
98.7 to 99.23
Lead (Pb), % 1.3 to 2.2
0
Manganese (Mn), % 0
0.6 to 0.9
Phosphorus (P), % 0
0.070 to 0.12
Sulfur (S), % 0
0.1 to 0.15
Tin (Sn), % 0.5 to 1.0
0
Zinc (Zn), % 34.3 to 39.2
0
Residuals, % 0 to 0.4
0