MakeItFrom.com
Menu (ESC)

C48600 Brass vs. ASTM A369 Grade FP9

C48600 brass belongs to the copper alloys classification, while ASTM A369 grade FP9 belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C48600 brass and the bottom bar is ASTM A369 grade FP9.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
190
Elongation at Break, % 20 to 25
20
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 39
75
Shear Strength, MPa 180 to 230
300
Tensile Strength: Ultimate (UTS), MPa 280 to 360
470
Tensile Strength: Yield (Proof), MPa 110 to 170
240

Thermal Properties

Latent Heat of Fusion, J/g 170
270
Maximum Temperature: Mechanical, °C 120
600
Melting Completion (Liquidus), °C 900
1450
Melting Onset (Solidus), °C 890
1410
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 110
26
Thermal Expansion, µm/m-K 21
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
9.0
Electrical Conductivity: Equal Weight (Specific), % IACS 28
10

Otherwise Unclassified Properties

Base Metal Price, % relative 24
6.5
Density, g/cm3 8.1
7.8
Embodied Carbon, kg CO2/kg material 2.8
2.0
Embodied Energy, MJ/kg 47
28
Embodied Water, L/kg 330
87

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 55 to 59
80
Resilience: Unit (Modulus of Resilience), kJ/m3 61 to 140
140
Stiffness to Weight: Axial, points 7.1
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 9.5 to 12
17
Strength to Weight: Bending, points 12 to 14
17
Thermal Diffusivity, mm2/s 36
6.9
Thermal Shock Resistance, points 9.3 to 12
13

Alloy Composition

Arsenic (As), % 0.020 to 0.25
0
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0
8.0 to 10
Copper (Cu), % 59 to 62
0
Iron (Fe), % 0
87.1 to 90.3
Lead (Pb), % 1.0 to 2.5
0
Manganese (Mn), % 0
0.3 to 0.6
Molybdenum (Mo), % 0
0.9 to 1.1
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0
0.5 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0.3 to 1.5
0
Zinc (Zn), % 33.4 to 39.7
0
Residuals, % 0 to 0.4
0