MakeItFrom.com
Menu (ESC)

C48600 Brass vs. ASTM A372 Grade L Steel

C48600 brass belongs to the copper alloys classification, while ASTM A372 grade L steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C48600 brass and the bottom bar is ASTM A372 grade L steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
190
Elongation at Break, % 20 to 25
14
Poisson's Ratio 0.31
0.29
Shear Modulus, GPa 39
73
Shear Strength, MPa 180 to 230
700
Tensile Strength: Ultimate (UTS), MPa 280 to 360
1160
Tensile Strength: Yield (Proof), MPa 110 to 170
1040

Thermal Properties

Latent Heat of Fusion, J/g 170
250
Maximum Temperature: Mechanical, °C 120
430
Melting Completion (Liquidus), °C 900
1460
Melting Onset (Solidus), °C 890
1420
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 110
44
Thermal Expansion, µm/m-K 21
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 28
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 24
3.5
Density, g/cm3 8.1
7.8
Embodied Carbon, kg CO2/kg material 2.8
1.7
Embodied Energy, MJ/kg 47
22
Embodied Water, L/kg 330
54

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 55 to 59
150
Resilience: Unit (Modulus of Resilience), kJ/m3 61 to 140
2890
Stiffness to Weight: Axial, points 7.1
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 9.5 to 12
41
Strength to Weight: Bending, points 12 to 14
31
Thermal Diffusivity, mm2/s 36
12
Thermal Shock Resistance, points 9.3 to 12
34

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Arsenic (As), % 0.020 to 0.25
0
Carbon (C), % 0
0.38 to 0.43
Chromium (Cr), % 0
0.7 to 0.9
Copper (Cu), % 59 to 62
0
Iron (Fe), % 0
95.2 to 96.3
Lead (Pb), % 1.0 to 2.5
0
Manganese (Mn), % 0
0.6 to 0.8
Molybdenum (Mo), % 0
0.2 to 0.3
Nickel (Ni), % 0
1.7 to 2.0
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 0
0.15 to 0.35
Sulfur (S), % 0
0 to 0.010
Tin (Sn), % 0.3 to 1.5
0
Zinc (Zn), % 33.4 to 39.7
0
Residuals, % 0 to 0.4
0