MakeItFrom.com
Menu (ESC)

C48600 Brass vs. EN 1.4460 Stainless Steel

C48600 brass belongs to the copper alloys classification, while EN 1.4460 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C48600 brass and the bottom bar is EN 1.4460 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
200
Elongation at Break, % 20 to 25
21
Poisson's Ratio 0.31
0.27
Shear Modulus, GPa 39
80
Shear Strength, MPa 180 to 230
470
Tensile Strength: Ultimate (UTS), MPa 280 to 360
750
Tensile Strength: Yield (Proof), MPa 110 to 170
510

Thermal Properties

Latent Heat of Fusion, J/g 170
300
Maximum Temperature: Mechanical, °C 120
1100
Melting Completion (Liquidus), °C 900
1430
Melting Onset (Solidus), °C 890
1390
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 110
15
Thermal Expansion, µm/m-K 21
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 28
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 24
18
Density, g/cm3 8.1
7.7
Embodied Carbon, kg CO2/kg material 2.8
3.4
Embodied Energy, MJ/kg 47
48
Embodied Water, L/kg 330
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 55 to 59
140
Resilience: Unit (Modulus of Resilience), kJ/m3 61 to 140
640
Stiffness to Weight: Axial, points 7.1
15
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 9.5 to 12
27
Strength to Weight: Bending, points 12 to 14
24
Thermal Diffusivity, mm2/s 36
4.0
Thermal Shock Resistance, points 9.3 to 12
20

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Arsenic (As), % 0.020 to 0.25
0
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0
25 to 28
Copper (Cu), % 59 to 62
0
Iron (Fe), % 0
60.2 to 69.2
Lead (Pb), % 1.0 to 2.5
0
Manganese (Mn), % 0
0 to 2.0
Molybdenum (Mo), % 0
1.3 to 2.0
Nickel (Ni), % 0
4.5 to 6.5
Nitrogen (N), % 0
0.050 to 0.2
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0.3 to 1.5
0
Zinc (Zn), % 33.4 to 39.7
0
Residuals, % 0 to 0.4
0