MakeItFrom.com
Menu (ESC)

C48600 Brass vs. S32304 Stainless Steel

C48600 brass belongs to the copper alloys classification, while S32304 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C48600 brass and the bottom bar is S32304 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
200
Elongation at Break, % 20 to 25
28
Poisson's Ratio 0.31
0.27
Shear Modulus, GPa 39
79
Shear Strength, MPa 180 to 230
440
Tensile Strength: Ultimate (UTS), MPa 280 to 360
670
Tensile Strength: Yield (Proof), MPa 110 to 170
460

Thermal Properties

Latent Heat of Fusion, J/g 170
290
Maximum Temperature: Mechanical, °C 120
1050
Melting Completion (Liquidus), °C 900
1420
Melting Onset (Solidus), °C 890
1380
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 110
15
Thermal Expansion, µm/m-K 21
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 28
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 24
14
Density, g/cm3 8.1
7.7
Embodied Carbon, kg CO2/kg material 2.8
2.8
Embodied Energy, MJ/kg 47
40
Embodied Water, L/kg 330
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 55 to 59
170
Resilience: Unit (Modulus of Resilience), kJ/m3 61 to 140
520
Stiffness to Weight: Axial, points 7.1
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 9.5 to 12
24
Strength to Weight: Bending, points 12 to 14
22
Thermal Diffusivity, mm2/s 36
4.0
Thermal Shock Resistance, points 9.3 to 12
18

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Arsenic (As), % 0.020 to 0.25
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
21.5 to 24.5
Copper (Cu), % 59 to 62
0.050 to 0.6
Iron (Fe), % 0
65 to 75.4
Lead (Pb), % 1.0 to 2.5
0
Manganese (Mn), % 0
0 to 2.5
Molybdenum (Mo), % 0
0.050 to 0.6
Nickel (Ni), % 0
3.0 to 5.5
Nitrogen (N), % 0
0.050 to 0.2
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0.3 to 1.5
0
Zinc (Zn), % 33.4 to 39.7
0
Residuals, % 0 to 0.4
0