MakeItFrom.com
Menu (ESC)

C48600 Brass vs. S36200 Stainless Steel

C48600 brass belongs to the copper alloys classification, while S36200 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C48600 brass and the bottom bar is S36200 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
190
Elongation at Break, % 20 to 25
3.4 to 4.6
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 39
76
Shear Strength, MPa 180 to 230
680 to 810
Tensile Strength: Ultimate (UTS), MPa 280 to 360
1180 to 1410
Tensile Strength: Yield (Proof), MPa 110 to 170
960 to 1240

Thermal Properties

Latent Heat of Fusion, J/g 170
280
Maximum Temperature: Mechanical, °C 120
820
Melting Completion (Liquidus), °C 900
1440
Melting Onset (Solidus), °C 890
1400
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 110
16
Thermal Expansion, µm/m-K 21
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 28
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 24
12
Density, g/cm3 8.1
7.8
Embodied Carbon, kg CO2/kg material 2.8
2.8
Embodied Energy, MJ/kg 47
40
Embodied Water, L/kg 330
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 55 to 59
46 to 51
Resilience: Unit (Modulus of Resilience), kJ/m3 61 to 140
2380 to 3930
Stiffness to Weight: Axial, points 7.1
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 9.5 to 12
42 to 50
Strength to Weight: Bending, points 12 to 14
32 to 36
Thermal Diffusivity, mm2/s 36
4.3
Thermal Shock Resistance, points 9.3 to 12
40 to 48

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
0 to 0.1
Arsenic (As), % 0.020 to 0.25
0
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0
14 to 14.5
Copper (Cu), % 59 to 62
0
Iron (Fe), % 0
75.4 to 79.5
Lead (Pb), % 1.0 to 2.5
0
Manganese (Mn), % 0
0 to 0.5
Molybdenum (Mo), % 0
0 to 0.3
Nickel (Ni), % 0
6.5 to 7.0
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0
0 to 0.3
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0.3 to 1.5
0
Titanium (Ti), % 0
0.6 to 0.9
Zinc (Zn), % 33.4 to 39.7
0
Residuals, % 0 to 0.4
0