MakeItFrom.com
Menu (ESC)

C49300 Brass vs. ACI-ASTM CA28MWV Steel

C49300 brass belongs to the copper alloys classification, while ACI-ASTM CA28MWV steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C49300 brass and the bottom bar is ACI-ASTM CA28MWV steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
200
Elongation at Break, % 4.5 to 20
11
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 40
76
Tensile Strength: Ultimate (UTS), MPa 430 to 520
1080
Tensile Strength: Yield (Proof), MPa 210 to 410
870

Thermal Properties

Latent Heat of Fusion, J/g 170
270
Maximum Temperature: Mechanical, °C 120
740
Melting Completion (Liquidus), °C 880
1470
Melting Onset (Solidus), °C 840
1430
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 88
25
Thermal Expansion, µm/m-K 20
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 15
4.6
Electrical Conductivity: Equal Weight (Specific), % IACS 17
5.3

Otherwise Unclassified Properties

Base Metal Price, % relative 26
11
Density, g/cm3 8.0
7.9
Embodied Carbon, kg CO2/kg material 3.0
3.1
Embodied Energy, MJ/kg 50
44
Embodied Water, L/kg 370
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 21 to 71
110
Resilience: Unit (Modulus of Resilience), kJ/m3 220 to 800
1920
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 15 to 18
38
Strength to Weight: Bending, points 16 to 18
30
Thermal Diffusivity, mm2/s 29
6.6
Thermal Shock Resistance, points 14 to 18
40

Alloy Composition

Aluminum (Al), % 0 to 0.5
0
Antimony (Sb), % 0 to 0.5
0
Bismuth (Bi), % 0.5 to 2.0
0
Carbon (C), % 0
0.2 to 0.28
Chromium (Cr), % 0
11 to 12.5
Copper (Cu), % 58 to 62
0
Iron (Fe), % 0 to 0.1
81.4 to 85.8
Lead (Pb), % 0 to 0.010
0
Manganese (Mn), % 0 to 0.030
0.5 to 1.0
Molybdenum (Mo), % 0
0.9 to 1.3
Nickel (Ni), % 0 to 1.5
0.5 to 1.0
Phosphorus (P), % 0 to 0.2
0 to 0.030
Selenium (Se), % 0 to 0.2
0
Silicon (Si), % 0 to 0.1
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 1.0 to 1.8
0
Tungsten (W), % 0
0.9 to 1.3
Vanadium (V), % 0
0.2 to 0.3
Zinc (Zn), % 30.6 to 40.5
0
Residuals, % 0 to 0.5
0