MakeItFrom.com
Menu (ESC)

C49300 Brass vs. AISI 420 Stainless Steel

C49300 brass belongs to the copper alloys classification, while AISI 420 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C49300 brass and the bottom bar is AISI 420 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
190
Elongation at Break, % 4.5 to 20
8.0 to 15
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 40
76
Shear Strength, MPa 270 to 290
420 to 1010
Tensile Strength: Ultimate (UTS), MPa 430 to 520
690 to 1720
Tensile Strength: Yield (Proof), MPa 210 to 410
380 to 1310

Thermal Properties

Latent Heat of Fusion, J/g 170
280
Maximum Temperature: Mechanical, °C 120
620
Melting Completion (Liquidus), °C 880
1510
Melting Onset (Solidus), °C 840
1450
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 88
27
Thermal Expansion, µm/m-K 20
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 15
3.0
Electrical Conductivity: Equal Weight (Specific), % IACS 17
3.5

Otherwise Unclassified Properties

Base Metal Price, % relative 26
7.5
Density, g/cm3 8.0
7.7
Embodied Carbon, kg CO2/kg material 3.0
2.0
Embodied Energy, MJ/kg 50
28
Embodied Water, L/kg 370
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 21 to 71
88 to 130
Resilience: Unit (Modulus of Resilience), kJ/m3 220 to 800
380 to 4410
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 15 to 18
25 to 62
Strength to Weight: Bending, points 16 to 18
22 to 41
Thermal Diffusivity, mm2/s 29
7.3
Thermal Shock Resistance, points 14 to 18
25 to 62

Alloy Composition

Aluminum (Al), % 0 to 0.5
0
Antimony (Sb), % 0 to 0.5
0
Bismuth (Bi), % 0.5 to 2.0
0
Carbon (C), % 0
0.15 to 0.4
Chromium (Cr), % 0
12 to 14
Copper (Cu), % 58 to 62
0
Iron (Fe), % 0 to 0.1
82.3 to 87.9
Lead (Pb), % 0 to 0.010
0
Manganese (Mn), % 0 to 0.030
0 to 1.0
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0 to 1.5
0 to 0.75
Phosphorus (P), % 0 to 0.2
0 to 0.040
Selenium (Se), % 0 to 0.2
0
Silicon (Si), % 0 to 0.1
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 1.0 to 1.8
0
Zinc (Zn), % 30.6 to 40.5
0
Residuals, % 0 to 0.5
0