MakeItFrom.com
Menu (ESC)

C49300 Brass vs. Nickel 80A

C49300 brass belongs to the copper alloys classification, while nickel 80A belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is C49300 brass and the bottom bar is nickel 80A.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
190
Elongation at Break, % 4.5 to 20
22
Poisson's Ratio 0.31
0.29
Shear Modulus, GPa 40
74
Shear Strength, MPa 270 to 290
660
Tensile Strength: Ultimate (UTS), MPa 430 to 520
1040
Tensile Strength: Yield (Proof), MPa 210 to 410
710

Thermal Properties

Latent Heat of Fusion, J/g 170
320
Maximum Temperature: Mechanical, °C 120
980
Melting Completion (Liquidus), °C 880
1360
Melting Onset (Solidus), °C 840
1310
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 88
11
Thermal Expansion, µm/m-K 20
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 15
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 17
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 26
55
Density, g/cm3 8.0
8.3
Embodied Carbon, kg CO2/kg material 3.0
9.8
Embodied Energy, MJ/kg 50
140
Embodied Water, L/kg 370
280

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 21 to 71
210
Resilience: Unit (Modulus of Resilience), kJ/m3 220 to 800
1300
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 19
23
Strength to Weight: Axial, points 15 to 18
35
Strength to Weight: Bending, points 16 to 18
27
Thermal Diffusivity, mm2/s 29
2.9
Thermal Shock Resistance, points 14 to 18
31

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.5
0.5 to 1.8
Antimony (Sb), % 0 to 0.5
0
Bismuth (Bi), % 0.5 to 2.0
0
Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0
18 to 21
Copper (Cu), % 58 to 62
0
Iron (Fe), % 0 to 0.1
0 to 3.0
Lead (Pb), % 0 to 0.010
0
Manganese (Mn), % 0 to 0.030
0 to 1.0
Nickel (Ni), % 0 to 1.5
69.4 to 79.7
Phosphorus (P), % 0 to 0.2
0
Selenium (Se), % 0 to 0.2
0
Silicon (Si), % 0 to 0.1
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 1.0 to 1.8
0
Titanium (Ti), % 0
1.8 to 2.7
Zinc (Zn), % 30.6 to 40.5
0
Residuals, % 0 to 0.5
0