MakeItFrom.com
Menu (ESC)

C50100 Bronze vs. ACI-ASTM CD3MWCuN Steel

C50100 bronze belongs to the copper alloys classification, while ACI-ASTM CD3MWCuN steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C50100 bronze and the bottom bar is ACI-ASTM CD3MWCuN steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 40
29
Poisson's Ratio 0.34
0.27
Shear Modulus, GPa 43
80
Tensile Strength: Ultimate (UTS), MPa 270
790
Tensile Strength: Yield (Proof), MPa 82
500

Thermal Properties

Latent Heat of Fusion, J/g 210
300
Maximum Temperature: Mechanical, °C 200
1100
Melting Completion (Liquidus), °C 1080
1460
Melting Onset (Solidus), °C 1070
1410
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 230
16
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 55
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 55
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 31
22
Density, g/cm3 8.9
7.9
Embodied Carbon, kg CO2/kg material 2.6
4.2
Embodied Energy, MJ/kg 42
58
Embodied Water, L/kg 310
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 82
200
Resilience: Unit (Modulus of Resilience), kJ/m3 29
620
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 8.3
28
Strength to Weight: Bending, points 10
24
Thermal Diffusivity, mm2/s 66
4.2
Thermal Shock Resistance, points 9.5
22

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
24 to 26
Copper (Cu), % 98.6 to 99.49
0.5 to 1.0
Iron (Fe), % 0 to 0.050
56.6 to 65.3
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
0 to 1.5
Molybdenum (Mo), % 0
3.0 to 4.0
Nickel (Ni), % 0
6.5 to 8.5
Nitrogen (N), % 0
0.2 to 0.3
Phosphorus (P), % 0.010 to 0.050
0 to 0.030
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.025
Tin (Sn), % 0.5 to 0.8
0
Tungsten (W), % 0
0.5 to 1.0
Residuals, % 0 to 0.5
0