MakeItFrom.com
Menu (ESC)

C50100 Bronze vs. ASTM A387 Grade 21 Steel

C50100 bronze belongs to the copper alloys classification, while ASTM A387 grade 21 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C50100 bronze and the bottom bar is ASTM A387 grade 21 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 40
21
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 43
74
Shear Strength, MPa 180
310 to 370
Tensile Strength: Ultimate (UTS), MPa 270
500 to 590
Tensile Strength: Yield (Proof), MPa 82
230 to 350

Thermal Properties

Latent Heat of Fusion, J/g 210
260
Maximum Temperature: Mechanical, °C 200
480
Melting Completion (Liquidus), °C 1080
1470
Melting Onset (Solidus), °C 1070
1430
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 230
41
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 55
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 55
8.8

Otherwise Unclassified Properties

Base Metal Price, % relative 31
4.1
Density, g/cm3 8.9
7.9
Embodied Carbon, kg CO2/kg material 2.6
1.8
Embodied Energy, MJ/kg 42
23
Embodied Water, L/kg 310
62

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 82
84 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 29
140 to 320
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 8.3
18 to 21
Strength to Weight: Bending, points 10
18 to 20
Thermal Diffusivity, mm2/s 66
11
Thermal Shock Resistance, points 9.5
14 to 17

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0.050 to 0.15
Chromium (Cr), % 0
2.8 to 3.3
Copper (Cu), % 98.6 to 99.49
0
Iron (Fe), % 0 to 0.050
94.4 to 96
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
0.3 to 0.6
Molybdenum (Mo), % 0
0.9 to 1.1
Phosphorus (P), % 0.010 to 0.050
0 to 0.025
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.025
Tin (Sn), % 0.5 to 0.8
0
Residuals, % 0 to 0.5
0