MakeItFrom.com
Menu (ESC)

C50100 Bronze vs. AWS ER100S-1

C50100 bronze belongs to the copper alloys classification, while AWS ER100S-1 belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C50100 bronze and the bottom bar is AWS ER100S-1.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 40
18
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 43
73
Tensile Strength: Ultimate (UTS), MPa 270
770
Tensile Strength: Yield (Proof), MPa 82
700

Thermal Properties

Latent Heat of Fusion, J/g 210
250
Melting Completion (Liquidus), °C 1080
1460
Melting Onset (Solidus), °C 1070
1410
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 230
49
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 55
7.7
Electrical Conductivity: Equal Weight (Specific), % IACS 55
8.9

Otherwise Unclassified Properties

Base Metal Price, % relative 31
3.6
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 2.6
1.8
Embodied Energy, MJ/kg 42
24
Embodied Water, L/kg 310
54

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 82
130
Resilience: Unit (Modulus of Resilience), kJ/m3 29
1290
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 8.3
27
Strength to Weight: Bending, points 10
24
Thermal Diffusivity, mm2/s 66
13
Thermal Shock Resistance, points 9.5
23

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
0 to 0.1
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0
0 to 0.3
Copper (Cu), % 98.6 to 99.49
0 to 0.25
Iron (Fe), % 0 to 0.050
93.5 to 96.9
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
1.3 to 1.8
Molybdenum (Mo), % 0
0.25 to 0.55
Nickel (Ni), % 0
1.4 to 2.1
Phosphorus (P), % 0.010 to 0.050
0 to 0.010
Silicon (Si), % 0
0.2 to 0.55
Sulfur (S), % 0
0 to 0.010
Tin (Sn), % 0.5 to 0.8
0
Titanium (Ti), % 0
0 to 0.1
Vanadium (V), % 0
0 to 0.050
Zirconium (Zr), % 0
0 to 0.1
Residuals, % 0 to 0.5
0 to 0.5