MakeItFrom.com
Menu (ESC)

C50100 Bronze vs. EN 1.4313 Stainless Steel

C50100 bronze belongs to the copper alloys classification, while EN 1.4313 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C50100 bronze and the bottom bar is EN 1.4313 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 40
12 to 17
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 43
76
Shear Strength, MPa 180
460 to 600
Tensile Strength: Ultimate (UTS), MPa 270
750 to 1000
Tensile Strength: Yield (Proof), MPa 82
580 to 910

Thermal Properties

Latent Heat of Fusion, J/g 210
280
Maximum Temperature: Mechanical, °C 200
780
Melting Completion (Liquidus), °C 1080
1450
Melting Onset (Solidus), °C 1070
1400
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 230
25
Thermal Expansion, µm/m-K 17
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 55
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 55
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 31
10
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 2.6
2.4
Embodied Energy, MJ/kg 42
34
Embodied Water, L/kg 310
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 82
110 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 29
870 to 2100
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 8.3
27 to 36
Strength to Weight: Bending, points 10
23 to 28
Thermal Diffusivity, mm2/s 66
6.7
Thermal Shock Resistance, points 9.5
27 to 36

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0
12 to 14
Copper (Cu), % 98.6 to 99.49
0
Iron (Fe), % 0 to 0.050
78.5 to 84.2
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
0 to 1.5
Molybdenum (Mo), % 0
0.3 to 0.7
Nickel (Ni), % 0
3.5 to 4.5
Nitrogen (N), % 0
0 to 0.020
Phosphorus (P), % 0.010 to 0.050
0 to 0.040
Silicon (Si), % 0
0 to 0.7
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0.5 to 0.8
0
Residuals, % 0 to 0.5
0