MakeItFrom.com
Menu (ESC)

C50100 Bronze vs. EN 1.4923 Stainless Steel

C50100 bronze belongs to the copper alloys classification, while EN 1.4923 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C50100 bronze and the bottom bar is EN 1.4923 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 40
12 to 21
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 43
76
Shear Strength, MPa 180
540 to 590
Tensile Strength: Ultimate (UTS), MPa 270
870 to 980
Tensile Strength: Yield (Proof), MPa 82
470 to 780

Thermal Properties

Latent Heat of Fusion, J/g 210
270
Maximum Temperature: Mechanical, °C 200
740
Melting Completion (Liquidus), °C 1080
1450
Melting Onset (Solidus), °C 1070
1410
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 230
24
Thermal Expansion, µm/m-K 17
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 55
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 55
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 31
8.0
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 2.6
2.9
Embodied Energy, MJ/kg 42
41
Embodied Water, L/kg 310
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 82
110 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 29
570 to 1580
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 8.3
31 to 35
Strength to Weight: Bending, points 10
26 to 28
Thermal Diffusivity, mm2/s 66
6.5
Thermal Shock Resistance, points 9.5
30 to 34

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0.18 to 0.24
Chromium (Cr), % 0
11 to 12.5
Copper (Cu), % 98.6 to 99.49
0
Iron (Fe), % 0 to 0.050
83.5 to 87.1
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
0.4 to 0.9
Molybdenum (Mo), % 0
0.8 to 1.2
Nickel (Ni), % 0
0.3 to 0.8
Phosphorus (P), % 0.010 to 0.050
0 to 0.025
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0.5 to 0.8
0
Vanadium (V), % 0
0.25 to 0.35
Residuals, % 0 to 0.5
0