MakeItFrom.com
Menu (ESC)

C50100 Bronze vs. Nickel 689

C50100 bronze belongs to the copper alloys classification, while nickel 689 belongs to the nickel alloys. There are 25 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is C50100 bronze and the bottom bar is nickel 689.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
210
Elongation at Break, % 40
23
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 43
80
Shear Strength, MPa 180
790
Tensile Strength: Ultimate (UTS), MPa 270
1250
Tensile Strength: Yield (Proof), MPa 82
690

Thermal Properties

Latent Heat of Fusion, J/g 210
330
Maximum Temperature: Mechanical, °C 200
990
Melting Completion (Liquidus), °C 1080
1440
Melting Onset (Solidus), °C 1070
1390
Specific Heat Capacity, J/kg-K 380
450
Thermal Expansion, µm/m-K 17
12

Otherwise Unclassified Properties

Base Metal Price, % relative 31
70
Density, g/cm3 8.9
8.5
Embodied Carbon, kg CO2/kg material 2.6
11
Embodied Energy, MJ/kg 42
150
Embodied Water, L/kg 310
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 82
240
Resilience: Unit (Modulus of Resilience), kJ/m3 29
1170
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 18
23
Strength to Weight: Axial, points 8.3
41
Strength to Weight: Bending, points 10
30
Thermal Shock Resistance, points 9.5
35

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
0.75 to 1.3
Boron (B), % 0
0.0030 to 0.010
Carbon (C), % 0
0.1 to 0.2
Chromium (Cr), % 0
18 to 20
Cobalt (Co), % 0
9.0 to 11
Copper (Cu), % 98.6 to 99.49
0
Iron (Fe), % 0 to 0.050
0 to 5.0
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
0 to 0.5
Molybdenum (Mo), % 0
9.0 to 10.5
Nickel (Ni), % 0
48.3 to 60.9
Phosphorus (P), % 0.010 to 0.050
0 to 0.015
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0.5 to 0.8
0
Titanium (Ti), % 0
2.3 to 2.8
Residuals, % 0 to 0.5
0