MakeItFrom.com
Menu (ESC)

C50100 Bronze vs. C82700 Copper

Both C50100 bronze and C82700 copper are copper alloys. They have a very high 96% of their average alloy composition in common. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C50100 bronze and the bottom bar is C82700 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
120
Elongation at Break, % 40
1.8
Poisson's Ratio 0.34
0.33
Shear Modulus, GPa 43
46
Tensile Strength: Ultimate (UTS), MPa 270
1200
Tensile Strength: Yield (Proof), MPa 82
1020

Thermal Properties

Latent Heat of Fusion, J/g 210
240
Maximum Temperature: Mechanical, °C 200
300
Melting Completion (Liquidus), °C 1080
950
Melting Onset (Solidus), °C 1070
860
Specific Heat Capacity, J/kg-K 380
380
Thermal Conductivity, W/m-K 230
130
Thermal Expansion, µm/m-K 17
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 55
20
Electrical Conductivity: Equal Weight (Specific), % IACS 55
21

Otherwise Unclassified Properties

Density, g/cm3 8.9
8.7
Embodied Carbon, kg CO2/kg material 2.6
12
Embodied Energy, MJ/kg 42
180
Embodied Water, L/kg 310
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 82
21
Resilience: Unit (Modulus of Resilience), kJ/m3 29
4260
Stiffness to Weight: Axial, points 7.2
7.8
Stiffness to Weight: Bending, points 18
19
Strength to Weight: Axial, points 8.3
38
Strength to Weight: Bending, points 10
29
Thermal Diffusivity, mm2/s 66
39
Thermal Shock Resistance, points 9.5
41

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
0 to 0.15
Beryllium (Be), % 0
2.4 to 2.6
Chromium (Cr), % 0
0 to 0.090
Copper (Cu), % 98.6 to 99.49
94.6 to 96.7
Iron (Fe), % 0 to 0.050
0 to 0.25
Lead (Pb), % 0 to 0.050
0 to 0.020
Nickel (Ni), % 0
1.0 to 1.5
Phosphorus (P), % 0.010 to 0.050
0
Silicon (Si), % 0
0 to 0.15
Tin (Sn), % 0.5 to 0.8
0 to 0.1
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0 to 0.5
0 to 0.5