MakeItFrom.com
Menu (ESC)

C50100 Bronze vs. C87900 Brass

Both C50100 bronze and C87900 brass are copper alloys. They have 66% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C50100 bronze and the bottom bar is C87900 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
110
Elongation at Break, % 40
25
Poisson's Ratio 0.34
0.31
Shear Modulus, GPa 43
41
Tensile Strength: Ultimate (UTS), MPa 270
480
Tensile Strength: Yield (Proof), MPa 82
240

Thermal Properties

Latent Heat of Fusion, J/g 210
190
Maximum Temperature: Mechanical, °C 200
130
Melting Completion (Liquidus), °C 1080
930
Melting Onset (Solidus), °C 1070
900
Specific Heat Capacity, J/kg-K 380
390
Thermal Conductivity, W/m-K 230
120
Thermal Expansion, µm/m-K 17
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 55
15
Electrical Conductivity: Equal Weight (Specific), % IACS 55
17

Otherwise Unclassified Properties

Base Metal Price, % relative 31
24
Density, g/cm3 8.9
8.1
Embodied Carbon, kg CO2/kg material 2.6
2.7
Embodied Energy, MJ/kg 42
46
Embodied Water, L/kg 310
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 82
100
Resilience: Unit (Modulus of Resilience), kJ/m3 29
270
Stiffness to Weight: Axial, points 7.2
7.3
Stiffness to Weight: Bending, points 18
20
Strength to Weight: Axial, points 8.3
17
Strength to Weight: Bending, points 10
17
Thermal Diffusivity, mm2/s 66
37
Thermal Shock Resistance, points 9.5
16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
0 to 0.15
Antimony (Sb), % 0
0 to 0.050
Arsenic (As), % 0
0 to 0.050
Copper (Cu), % 98.6 to 99.49
63 to 69.2
Iron (Fe), % 0 to 0.050
0 to 0.4
Lead (Pb), % 0 to 0.050
0 to 0.25
Manganese (Mn), % 0
0 to 0.15
Nickel (Ni), % 0
0 to 0.5
Phosphorus (P), % 0.010 to 0.050
0 to 0.010
Silicon (Si), % 0
0.8 to 1.2
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 0.5 to 0.8
0 to 0.25
Zinc (Zn), % 0
30 to 36
Residuals, % 0 to 0.5
0