MakeItFrom.com
Menu (ESC)

C50100 Bronze vs. C96200 Copper-nickel

Both C50100 bronze and C96200 copper-nickel are copper alloys. They have 87% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C50100 bronze and the bottom bar is C96200 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
120
Elongation at Break, % 40
23
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 43
46
Tensile Strength: Ultimate (UTS), MPa 270
350
Tensile Strength: Yield (Proof), MPa 82
190

Thermal Properties

Latent Heat of Fusion, J/g 210
220
Maximum Temperature: Mechanical, °C 200
220
Melting Completion (Liquidus), °C 1080
1150
Melting Onset (Solidus), °C 1070
1100
Specific Heat Capacity, J/kg-K 380
390
Thermal Conductivity, W/m-K 230
45
Thermal Expansion, µm/m-K 17
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 55
11
Electrical Conductivity: Equal Weight (Specific), % IACS 55
11

Otherwise Unclassified Properties

Base Metal Price, % relative 31
36
Density, g/cm3 8.9
8.9
Embodied Carbon, kg CO2/kg material 2.6
3.8
Embodied Energy, MJ/kg 42
58
Embodied Water, L/kg 310
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 82
68
Resilience: Unit (Modulus of Resilience), kJ/m3 29
150
Stiffness to Weight: Axial, points 7.2
7.8
Stiffness to Weight: Bending, points 18
19
Strength to Weight: Axial, points 8.3
11
Strength to Weight: Bending, points 10
13
Thermal Diffusivity, mm2/s 66
13
Thermal Shock Resistance, points 9.5
12

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0 to 0.1
Copper (Cu), % 98.6 to 99.49
83.6 to 90
Iron (Fe), % 0 to 0.050
1.0 to 1.8
Lead (Pb), % 0 to 0.050
0 to 0.010
Manganese (Mn), % 0
0 to 1.5
Nickel (Ni), % 0
9.0 to 11
Niobium (Nb), % 0
0 to 1.0
Phosphorus (P), % 0.010 to 0.050
0 to 0.020
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.020
Tin (Sn), % 0.5 to 0.8
0
Residuals, % 0 to 0.5
0 to 0.5