MakeItFrom.com
Menu (ESC)

C51000 Bronze vs. SAE-AISI D4 Steel

C51000 bronze belongs to the copper alloys classification, while SAE-AISI D4 steel belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C51000 bronze and the bottom bar is SAE-AISI D4 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 2.7 to 64
8.4 to 15
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 42
74
Shear Strength, MPa 250 to 460
460 to 1210
Tensile Strength: Ultimate (UTS), MPa 330 to 780
760 to 2060
Tensile Strength: Yield (Proof), MPa 130 to 750
470 to 1540

Thermal Properties

Latent Heat of Fusion, J/g 200
270
Melting Completion (Liquidus), °C 1050
1430
Melting Onset (Solidus), °C 960
1380
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 77
31
Thermal Expansion, µm/m-K 18
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 18
4.2
Electrical Conductivity: Equal Weight (Specific), % IACS 18
5.0

Otherwise Unclassified Properties

Base Metal Price, % relative 33
8.0
Density, g/cm3 8.8
7.7
Embodied Carbon, kg CO2/kg material 3.1
3.3
Embodied Energy, MJ/kg 50
49
Embodied Water, L/kg 350
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 7.0 to 490
100 to 160
Stiffness to Weight: Axial, points 7.0
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 10 to 25
27 to 75
Strength to Weight: Bending, points 12 to 21
24 to 47
Thermal Diffusivity, mm2/s 23
8.3
Thermal Shock Resistance, points 12 to 28
23 to 63

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
2.1 to 2.4
Chromium (Cr), % 0
11 to 13
Copper (Cu), % 92.9 to 95.5
0 to 0.25
Iron (Fe), % 0 to 0.1
80.6 to 86.3
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
0 to 0.6
Molybdenum (Mo), % 0
0.7 to 1.2
Nickel (Ni), % 0
0 to 0.3
Phosphorus (P), % 0.030 to 0.35
0 to 0.030
Silicon (Si), % 0
0 to 0.6
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 4.5 to 5.8
0
Vanadium (V), % 0
0 to 1.0
Zinc (Zn), % 0 to 0.3
0
Residuals, % 0 to 0.5
0