MakeItFrom.com
Menu (ESC)

C51000 Bronze vs. C61300 Bronze

Both C51000 bronze and C61300 bronze are copper alloys. They have a moderately high 91% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C51000 bronze and the bottom bar is C61300 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 2.7 to 64
34 to 40
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 42
43
Shear Strength, MPa 250 to 460
370 to 390
Tensile Strength: Ultimate (UTS), MPa 330 to 780
550 to 580
Tensile Strength: Yield (Proof), MPa 130 to 750
230 to 310

Thermal Properties

Latent Heat of Fusion, J/g 200
220
Maximum Temperature: Mechanical, °C 190
210
Melting Completion (Liquidus), °C 1050
1050
Melting Onset (Solidus), °C 960
1040
Specific Heat Capacity, J/kg-K 380
420
Thermal Conductivity, W/m-K 77
55
Thermal Expansion, µm/m-K 18
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 18
12
Electrical Conductivity: Equal Weight (Specific), % IACS 18
13

Otherwise Unclassified Properties

Base Metal Price, % relative 33
29
Density, g/cm3 8.8
8.5
Embodied Carbon, kg CO2/kg material 3.1
3.0
Embodied Energy, MJ/kg 50
49
Embodied Water, L/kg 350
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 7.0 to 490
150 to 190
Resilience: Unit (Modulus of Resilience), kJ/m3 75 to 2490
230 to 410
Stiffness to Weight: Axial, points 7.0
7.5
Stiffness to Weight: Bending, points 18
19
Strength to Weight: Axial, points 10 to 25
18 to 19
Strength to Weight: Bending, points 12 to 21
18
Thermal Diffusivity, mm2/s 23
15
Thermal Shock Resistance, points 12 to 28
19 to 20

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
6.0 to 7.5
Copper (Cu), % 92.9 to 95.5
88 to 91.8
Iron (Fe), % 0 to 0.1
2.0 to 3.0
Lead (Pb), % 0 to 0.050
0 to 0.010
Manganese (Mn), % 0
0 to 0.2
Nickel (Ni), % 0
0 to 0.15
Phosphorus (P), % 0.030 to 0.35
0 to 0.015
Silicon (Si), % 0
0 to 0.1
Tin (Sn), % 4.5 to 5.8
0.2 to 0.5
Zinc (Zn), % 0 to 0.3
0 to 0.2
Residuals, % 0 to 0.5
0 to 0.2

Comparable Variants