MakeItFrom.com
Menu (ESC)

C51100 Bronze vs. AISI 310 Stainless Steel

C51100 bronze belongs to the copper alloys classification, while AISI 310 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C51100 bronze and the bottom bar is AISI 310 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 2.5 to 50
34 to 45
Poisson's Ratio 0.34
0.27
Rockwell B Hardness 67 to 93
82
Shear Modulus, GPa 42
78
Shear Strength, MPa 230 to 410
420 to 470
Tensile Strength: Ultimate (UTS), MPa 330 to 720
600 to 710
Tensile Strength: Yield (Proof), MPa 93 to 700
260 to 350

Thermal Properties

Latent Heat of Fusion, J/g 200
310
Maximum Temperature: Mechanical, °C 190
1040
Melting Completion (Liquidus), °C 1060
1450
Melting Onset (Solidus), °C 970
1400
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 84
15
Thermal Expansion, µm/m-K 18
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 20
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 20
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 32
25
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 3.0
4.3
Embodied Energy, MJ/kg 48
61
Embodied Water, L/kg 340
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 18 to 140
200 to 220
Resilience: Unit (Modulus of Resilience), kJ/m3 38 to 2170
170 to 310
Stiffness to Weight: Axial, points 7.1
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 10 to 22
21 to 25
Strength to Weight: Bending, points 12 to 20
20 to 22
Thermal Diffusivity, mm2/s 25
3.9
Thermal Shock Resistance, points 12 to 26
14 to 17

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0 to 0.25
Chromium (Cr), % 0
24 to 26
Copper (Cu), % 93.8 to 96.5
0
Iron (Fe), % 0 to 0.1
48.2 to 57
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
0 to 2.0
Nickel (Ni), % 0
19 to 22
Phosphorus (P), % 0.030 to 0.35
0 to 0.045
Silicon (Si), % 0
0 to 1.5
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 3.5 to 4.9
0
Zinc (Zn), % 0 to 0.3
0
Residuals, % 0 to 0.5
0