MakeItFrom.com
Menu (ESC)

C51100 Bronze vs. EN 1.4335 Stainless Steel

C51100 bronze belongs to the copper alloys classification, while EN 1.4335 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C51100 bronze and the bottom bar is EN 1.4335 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 2.5 to 50
45
Poisson's Ratio 0.34
0.27
Shear Modulus, GPa 42
79
Shear Strength, MPa 230 to 410
400
Tensile Strength: Ultimate (UTS), MPa 330 to 720
570
Tensile Strength: Yield (Proof), MPa 93 to 700
230

Thermal Properties

Latent Heat of Fusion, J/g 200
300
Maximum Temperature: Mechanical, °C 190
1100
Melting Completion (Liquidus), °C 1060
1410
Melting Onset (Solidus), °C 970
1370
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 84
14
Thermal Expansion, µm/m-K 18
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 20
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 20
2.3

Otherwise Unclassified Properties

Base Metal Price, % relative 32
25
Density, g/cm3 8.9
7.9
Embodied Carbon, kg CO2/kg material 3.0
4.4
Embodied Energy, MJ/kg 48
62
Embodied Water, L/kg 340
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 18 to 140
210
Resilience: Unit (Modulus of Resilience), kJ/m3 38 to 2170
130
Stiffness to Weight: Axial, points 7.1
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 10 to 22
20
Strength to Weight: Bending, points 12 to 20
19
Thermal Diffusivity, mm2/s 25
3.7
Thermal Shock Resistance, points 12 to 26
12

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0 to 0.020
Chromium (Cr), % 0
24 to 26
Copper (Cu), % 93.8 to 96.5
0
Iron (Fe), % 0 to 0.1
49.4 to 56
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
0 to 2.0
Molybdenum (Mo), % 0
0 to 0.2
Nickel (Ni), % 0
20 to 22
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0.030 to 0.35
0 to 0.025
Silicon (Si), % 0
0 to 0.25
Sulfur (S), % 0
0 to 0.010
Tin (Sn), % 3.5 to 4.9
0
Zinc (Zn), % 0 to 0.3
0
Residuals, % 0 to 0.5
0