MakeItFrom.com
Menu (ESC)

C51100 Bronze vs. SAE-AISI 4340M Steel

C51100 bronze belongs to the copper alloys classification, while SAE-AISI 4340M steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is C51100 bronze and the bottom bar is SAE-AISI 4340M steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 2.5 to 50
6.0
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 42
72
Shear Strength, MPa 230 to 410
1360
Tensile Strength: Ultimate (UTS), MPa 330 to 720
2340
Tensile Strength: Yield (Proof), MPa 93 to 700
1240

Thermal Properties

Latent Heat of Fusion, J/g 200
280
Maximum Temperature: Mechanical, °C 190
430
Melting Completion (Liquidus), °C 1060
1440
Melting Onset (Solidus), °C 970
1400
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 84
38
Thermal Expansion, µm/m-K 18
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 20
7.8
Electrical Conductivity: Equal Weight (Specific), % IACS 20
9.1

Otherwise Unclassified Properties

Base Metal Price, % relative 32
3.9
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 3.0
1.9
Embodied Energy, MJ/kg 48
26
Embodied Water, L/kg 340
55

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 18 to 140
120
Resilience: Unit (Modulus of Resilience), kJ/m3 38 to 2170
4120
Stiffness to Weight: Axial, points 7.1
13
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 10 to 22
84
Strength to Weight: Bending, points 12 to 20
51
Thermal Diffusivity, mm2/s 25
10
Thermal Shock Resistance, points 12 to 26
70

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0.38 to 0.43
Chromium (Cr), % 0
0.7 to 1.0
Copper (Cu), % 93.8 to 96.5
0
Iron (Fe), % 0 to 0.1
93.3 to 94.8
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
0.65 to 0.9
Molybdenum (Mo), % 0
0.35 to 0.45
Nickel (Ni), % 0
1.7 to 2.0
Phosphorus (P), % 0.030 to 0.35
0 to 0.012
Silicon (Si), % 0
1.5 to 1.8
Sulfur (S), % 0
0 to 0.012
Tin (Sn), % 3.5 to 4.9
0
Vanadium (V), % 0
0.050 to 0.1
Zinc (Zn), % 0 to 0.3
0
Residuals, % 0 to 0.5
0