MakeItFrom.com
Menu (ESC)

C51100 Bronze vs. C15500 Copper

Both C51100 bronze and C15500 copper are copper alloys. They have a very high 95% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C51100 bronze and the bottom bar is C15500 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
120
Elongation at Break, % 2.5 to 50
3.0 to 37
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 42
43
Shear Strength, MPa 230 to 410
190 to 320
Tensile Strength: Ultimate (UTS), MPa 330 to 720
280 to 550
Tensile Strength: Yield (Proof), MPa 93 to 700
130 to 530

Thermal Properties

Latent Heat of Fusion, J/g 200
210
Maximum Temperature: Mechanical, °C 190
200
Melting Completion (Liquidus), °C 1060
1080
Melting Onset (Solidus), °C 970
1080
Specific Heat Capacity, J/kg-K 380
390
Thermal Conductivity, W/m-K 84
350
Thermal Expansion, µm/m-K 18
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 20
90
Electrical Conductivity: Equal Weight (Specific), % IACS 20
91

Otherwise Unclassified Properties

Base Metal Price, % relative 32
33
Density, g/cm3 8.9
8.9
Embodied Carbon, kg CO2/kg material 3.0
2.7
Embodied Energy, MJ/kg 48
42
Embodied Water, L/kg 340
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 18 to 140
15 to 84
Resilience: Unit (Modulus of Resilience), kJ/m3 38 to 2170
72 to 1210
Stiffness to Weight: Axial, points 7.1
7.2
Stiffness to Weight: Bending, points 18
18
Strength to Weight: Axial, points 10 to 22
8.6 to 17
Strength to Weight: Bending, points 12 to 20
11 to 17
Thermal Diffusivity, mm2/s 25
100
Thermal Shock Resistance, points 12 to 26
9.8 to 20

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Copper (Cu), % 93.8 to 96.5
99.75 to 99.853
Iron (Fe), % 0 to 0.1
0
Lead (Pb), % 0 to 0.050
0
Magnesium (Mg), % 0
0.080 to 0.13
Phosphorus (P), % 0.030 to 0.35
0.040 to 0.080
Silver (Ag), % 0
0.027 to 0.1
Tin (Sn), % 3.5 to 4.9
0
Zinc (Zn), % 0 to 0.3
0
Residuals, % 0 to 0.5
0 to 0.2

Comparable Variants