MakeItFrom.com
Menu (ESC)

C51100 Bronze vs. N07752 Nickel

C51100 bronze belongs to the copper alloys classification, while N07752 nickel belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C51100 bronze and the bottom bar is N07752 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 2.5 to 50
22
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 42
73
Shear Strength, MPa 230 to 410
710
Tensile Strength: Ultimate (UTS), MPa 330 to 720
1120
Tensile Strength: Yield (Proof), MPa 93 to 700
740

Thermal Properties

Latent Heat of Fusion, J/g 200
310
Maximum Temperature: Mechanical, °C 190
960
Melting Completion (Liquidus), °C 1060
1380
Melting Onset (Solidus), °C 970
1330
Specific Heat Capacity, J/kg-K 380
460
Thermal Conductivity, W/m-K 84
13
Thermal Expansion, µm/m-K 18
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 20
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 20
1.5

Otherwise Unclassified Properties

Base Metal Price, % relative 32
60
Density, g/cm3 8.9
8.4
Embodied Carbon, kg CO2/kg material 3.0
10
Embodied Energy, MJ/kg 48
150
Embodied Water, L/kg 340
260

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 18 to 140
220
Resilience: Unit (Modulus of Resilience), kJ/m3 38 to 2170
1450
Stiffness to Weight: Axial, points 7.1
13
Stiffness to Weight: Bending, points 18
23
Strength to Weight: Axial, points 10 to 22
37
Strength to Weight: Bending, points 12 to 20
29
Thermal Diffusivity, mm2/s 25
3.2
Thermal Shock Resistance, points 12 to 26
34

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
0.4 to 1.0
Boron (B), % 0
0 to 0.0070
Carbon (C), % 0
0.020 to 0.060
Chromium (Cr), % 0
14.5 to 17
Cobalt (Co), % 0
0 to 0.050
Copper (Cu), % 93.8 to 96.5
0 to 0.5
Iron (Fe), % 0 to 0.1
5.0 to 9.0
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 0
70 to 77.1
Niobium (Nb), % 0
0.7 to 1.2
Phosphorus (P), % 0.030 to 0.35
0 to 0.0080
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.0030
Tin (Sn), % 3.5 to 4.9
0
Titanium (Ti), % 0
2.3 to 2.8
Vanadium (V), % 0
0 to 0.1
Zinc (Zn), % 0 to 0.3
0 to 0.050
Residuals, % 0 to 0.5
0