MakeItFrom.com
Menu (ESC)

C51900 Bronze vs. EN 1.4104 Stainless Steel

C51900 bronze belongs to the copper alloys classification, while EN 1.4104 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C51900 bronze and the bottom bar is EN 1.4104 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 14 to 29
11 to 23
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 42
77
Shear Strength, MPa 320 to 370
400 to 450
Tensile Strength: Ultimate (UTS), MPa 380 to 620
630 to 750
Tensile Strength: Yield (Proof), MPa 390 to 570
350 to 560

Thermal Properties

Latent Heat of Fusion, J/g 200
280
Maximum Temperature: Mechanical, °C 180
860
Melting Completion (Liquidus), °C 1040
1440
Melting Onset (Solidus), °C 930
1390
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 66
25
Thermal Expansion, µm/m-K 18
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 14
2.5
Electrical Conductivity: Equal Weight (Specific), % IACS 14
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 33
8.5
Density, g/cm3 8.8
7.7
Embodied Carbon, kg CO2/kg material 3.2
2.2
Embodied Energy, MJ/kg 51
30
Embodied Water, L/kg 360
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 55 to 180
77 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 680 to 1450
310 to 800
Stiffness to Weight: Axial, points 7.0
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 12 to 19
23 to 27
Strength to Weight: Bending, points 13 to 18
21 to 24
Thermal Diffusivity, mm2/s 20
6.7
Thermal Shock Resistance, points 14 to 22
22 to 27

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0.1 to 0.17
Chromium (Cr), % 0
15.5 to 17.5
Copper (Cu), % 91.7 to 95
0
Iron (Fe), % 0 to 0.1
78.8 to 84.1
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
0 to 1.5
Molybdenum (Mo), % 0
0.2 to 0.6
Phosphorus (P), % 0.030 to 0.35
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0.15 to 0.35
Tin (Sn), % 5.0 to 7.0
0
Zinc (Zn), % 0 to 0.3
0
Residuals, % 0 to 0.5
0