MakeItFrom.com
Menu (ESC)

C51900 Bronze vs. EN 1.4945 Stainless Steel

C51900 bronze belongs to the copper alloys classification, while EN 1.4945 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C51900 bronze and the bottom bar is EN 1.4945 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 14 to 29
19 to 34
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 42
77
Shear Strength, MPa 320 to 370
430 to 460
Tensile Strength: Ultimate (UTS), MPa 380 to 620
640 to 740
Tensile Strength: Yield (Proof), MPa 390 to 570
290 to 550

Thermal Properties

Latent Heat of Fusion, J/g 200
290
Maximum Temperature: Mechanical, °C 180
920
Melting Completion (Liquidus), °C 1040
1490
Melting Onset (Solidus), °C 930
1440
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 66
14
Thermal Expansion, µm/m-K 18
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 14
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 14
3.2

Otherwise Unclassified Properties

Base Metal Price, % relative 33
30
Density, g/cm3 8.8
8.1
Embodied Carbon, kg CO2/kg material 3.2
5.0
Embodied Energy, MJ/kg 51
73
Embodied Water, L/kg 360
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 55 to 180
130 to 180
Resilience: Unit (Modulus of Resilience), kJ/m3 680 to 1450
210 to 760
Stiffness to Weight: Axial, points 7.0
14
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 12 to 19
22 to 25
Strength to Weight: Bending, points 13 to 18
20 to 22
Thermal Diffusivity, mm2/s 20
3.7
Thermal Shock Resistance, points 14 to 22
14 to 16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0.040 to 0.1
Chromium (Cr), % 0
15.5 to 17.5
Copper (Cu), % 91.7 to 95
0
Iron (Fe), % 0 to 0.1
57.9 to 65.7
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
0 to 1.5
Nickel (Ni), % 0
15.5 to 17.5
Niobium (Nb), % 0
0.4 to 1.2
Nitrogen (N), % 0
0.060 to 0.14
Phosphorus (P), % 0.030 to 0.35
0 to 0.035
Silicon (Si), % 0
0.3 to 0.6
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 5.0 to 7.0
0
Tungsten (W), % 0
2.5 to 3.5
Zinc (Zn), % 0 to 0.3
0
Residuals, % 0 to 0.5
0