MakeItFrom.com
Menu (ESC)

C51900 Bronze vs. C18400 Copper

Both C51900 bronze and C18400 copper are copper alloys. They have a moderately high 94% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is C51900 bronze and the bottom bar is C18400 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
120
Elongation at Break, % 14 to 29
13 to 50
Poisson's Ratio 0.34
0.34
Rockwell B Hardness 42 to 91
16 to 84
Shear Modulus, GPa 42
44
Shear Strength, MPa 320 to 370
190 to 310
Tensile Strength: Ultimate (UTS), MPa 380 to 620
270 to 490
Tensile Strength: Yield (Proof), MPa 390 to 570
110 to 480

Thermal Properties

Latent Heat of Fusion, J/g 200
210
Maximum Temperature: Mechanical, °C 180
200
Melting Completion (Liquidus), °C 1040
1080
Melting Onset (Solidus), °C 930
1070
Specific Heat Capacity, J/kg-K 380
390
Thermal Conductivity, W/m-K 66
320
Thermal Expansion, µm/m-K 18
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 14
80
Electrical Conductivity: Equal Weight (Specific), % IACS 14
81

Otherwise Unclassified Properties

Base Metal Price, % relative 33
31
Density, g/cm3 8.8
8.9
Embodied Carbon, kg CO2/kg material 3.2
2.6
Embodied Energy, MJ/kg 51
41
Embodied Water, L/kg 360
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 55 to 180
63 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 680 to 1450
54 to 980
Stiffness to Weight: Axial, points 7.0
7.3
Stiffness to Weight: Bending, points 18
18
Strength to Weight: Axial, points 12 to 19
8.5 to 15
Strength to Weight: Bending, points 13 to 18
10 to 16
Thermal Diffusivity, mm2/s 20
94
Thermal Shock Resistance, points 14 to 22
9.6 to 17

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Arsenic (As), % 0
0 to 0.0050
Calcium (Ca), % 0
0 to 0.0050
Chromium (Cr), % 0
0.4 to 1.2
Copper (Cu), % 91.7 to 95
97.2 to 99.6
Iron (Fe), % 0 to 0.1
0 to 0.15
Lead (Pb), % 0 to 0.050
0
Lithium (Li), % 0
0 to 0.050
Phosphorus (P), % 0.030 to 0.35
0 to 0.050
Silicon (Si), % 0
0 to 0.1
Tin (Sn), % 5.0 to 7.0
0
Zinc (Zn), % 0 to 0.3
0 to 0.7
Residuals, % 0 to 0.5
0 to 0.5