MakeItFrom.com
Menu (ESC)

C51900 Bronze vs. S41050 Stainless Steel

C51900 bronze belongs to the copper alloys classification, while S41050 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C51900 bronze and the bottom bar is S41050 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 14 to 29
25
Poisson's Ratio 0.34
0.28
Rockwell B Hardness 42 to 91
77
Shear Modulus, GPa 42
76
Shear Strength, MPa 320 to 370
300
Tensile Strength: Ultimate (UTS), MPa 380 to 620
470
Tensile Strength: Yield (Proof), MPa 390 to 570
230

Thermal Properties

Latent Heat of Fusion, J/g 200
270
Maximum Temperature: Mechanical, °C 180
720
Melting Completion (Liquidus), °C 1040
1440
Melting Onset (Solidus), °C 930
1400
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 66
27
Thermal Expansion, µm/m-K 18
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 14
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 14
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 33
7.0
Density, g/cm3 8.8
7.8
Embodied Carbon, kg CO2/kg material 3.2
1.9
Embodied Energy, MJ/kg 51
27
Embodied Water, L/kg 360
97

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 55 to 180
98
Resilience: Unit (Modulus of Resilience), kJ/m3 680 to 1450
140
Stiffness to Weight: Axial, points 7.0
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 12 to 19
17
Strength to Weight: Bending, points 13 to 18
17
Thermal Diffusivity, mm2/s 20
7.2
Thermal Shock Resistance, points 14 to 22
17

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0 to 0.040
Chromium (Cr), % 0
10.5 to 12.5
Copper (Cu), % 91.7 to 95
0
Iron (Fe), % 0 to 0.1
84.2 to 88.9
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 0
0.6 to 1.1
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0.030 to 0.35
0 to 0.045
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 5.0 to 7.0
0
Zinc (Zn), % 0 to 0.3
0
Residuals, % 0 to 0.5
0