MakeItFrom.com
Menu (ESC)

C51900 Bronze vs. S66286 Stainless Steel

C51900 bronze belongs to the copper alloys classification, while S66286 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C51900 bronze and the bottom bar is S66286 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 14 to 29
17 to 40
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 42
75
Shear Strength, MPa 320 to 370
420 to 630
Tensile Strength: Ultimate (UTS), MPa 380 to 620
620 to 1020
Tensile Strength: Yield (Proof), MPa 390 to 570
280 to 670

Thermal Properties

Latent Heat of Fusion, J/g 200
300
Maximum Temperature: Mechanical, °C 180
920
Melting Completion (Liquidus), °C 1040
1430
Melting Onset (Solidus), °C 930
1370
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 66
15
Thermal Expansion, µm/m-K 18
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 14
1.9
Electrical Conductivity: Equal Weight (Specific), % IACS 14
2.2

Otherwise Unclassified Properties

Base Metal Price, % relative 33
26
Density, g/cm3 8.8
7.9
Embodied Carbon, kg CO2/kg material 3.2
6.0
Embodied Energy, MJ/kg 51
87
Embodied Water, L/kg 360
170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 55 to 180
150 to 200
Resilience: Unit (Modulus of Resilience), kJ/m3 680 to 1450
190 to 1150
Stiffness to Weight: Axial, points 7.0
14
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 12 to 19
22 to 36
Strength to Weight: Bending, points 13 to 18
20 to 28
Thermal Diffusivity, mm2/s 20
4.0
Thermal Shock Resistance, points 14 to 22
13 to 22

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
0 to 0.35
Boron (B), % 0
0.0010 to 0.010
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0
13.5 to 16
Copper (Cu), % 91.7 to 95
0
Iron (Fe), % 0 to 0.1
49.1 to 59.5
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
0 to 2.0
Molybdenum (Mo), % 0
1.0 to 1.5
Nickel (Ni), % 0
24 to 27
Phosphorus (P), % 0.030 to 0.35
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 5.0 to 7.0
0
Titanium (Ti), % 0
1.9 to 2.4
Vanadium (V), % 0
0.1 to 0.5
Zinc (Zn), % 0 to 0.3
0
Residuals, % 0 to 0.5
0