MakeItFrom.com
Menu (ESC)

C52100 Bronze vs. CC498K Bronze

Both C52100 bronze and CC498K bronze are copper alloys. They have a moderately high 94% of their average alloy composition in common. There are 24 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C52100 bronze and the bottom bar is CC498K bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 41
41
Tensile Strength: Ultimate (UTS), MPa 380 to 800
260

Thermal Properties

Latent Heat of Fusion, J/g 200
190
Maximum Temperature: Mechanical, °C 180
170
Melting Completion (Liquidus), °C 1030
1000
Melting Onset (Solidus), °C 880
920
Specific Heat Capacity, J/kg-K 370
370
Thermal Conductivity, W/m-K 62
73
Thermal Expansion, µm/m-K 18
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 13
10
Electrical Conductivity: Equal Weight (Specific), % IACS 13
10

Otherwise Unclassified Properties

Base Metal Price, % relative 34
32
Density, g/cm3 8.8
8.8
Embodied Carbon, kg CO2/kg material 3.4
3.2
Embodied Energy, MJ/kg 55
52
Embodied Water, L/kg 370
360

Common Calculations

Stiffness to Weight: Axial, points 7.0
6.9
Stiffness to Weight: Bending, points 18
18
Strength to Weight: Axial, points 12 to 25
8.1
Strength to Weight: Bending, points 13 to 22
10
Thermal Diffusivity, mm2/s 19
22
Thermal Shock Resistance, points 14 to 28
9.3

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
0 to 0.010
Antimony (Sb), % 0
0 to 0.25
Copper (Cu), % 89.8 to 93
85 to 90
Iron (Fe), % 0 to 0.1
0 to 0.25
Lead (Pb), % 0 to 0.050
1.0 to 2.0
Nickel (Ni), % 0
0 to 1.0
Phosphorus (P), % 0.030 to 0.35
0 to 0.050
Silicon (Si), % 0
0 to 0.010
Sulfur (S), % 0
0 to 0.1
Tin (Sn), % 7.0 to 9.0
5.5 to 6.5
Zinc (Zn), % 0 to 0.2
3.0 to 5.0
Residuals, % 0 to 0.5
0