MakeItFrom.com
Menu (ESC)

C53400 Bronze vs. A356.0 Aluminum

C53400 bronze belongs to the copper alloys classification, while A356.0 aluminum belongs to the aluminum alloys. There are 24 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C53400 bronze and the bottom bar is A356.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
70
Poisson's Ratio 0.34
0.33
Shear Modulus, GPa 42
26
Tensile Strength: Ultimate (UTS), MPa 330 to 720
160 to 270

Thermal Properties

Latent Heat of Fusion, J/g 200
500
Maximum Temperature: Mechanical, °C 180
170
Melting Completion (Liquidus), °C 1050
610
Melting Onset (Solidus), °C 950
570
Specific Heat Capacity, J/kg-K 380
900
Thermal Conductivity, W/m-K 69
150
Thermal Expansion, µm/m-K 18
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 15
40
Electrical Conductivity: Equal Weight (Specific), % IACS 15
140

Otherwise Unclassified Properties

Base Metal Price, % relative 32
9.5
Density, g/cm3 8.9
2.6
Embodied Carbon, kg CO2/kg material 3.0
8.0
Embodied Energy, MJ/kg 49
150
Embodied Water, L/kg 350
1110

Common Calculations

Stiffness to Weight: Axial, points 7.0
15
Stiffness to Weight: Bending, points 18
53
Strength to Weight: Axial, points 10 to 22
17 to 29
Strength to Weight: Bending, points 12 to 20
25 to 36
Thermal Diffusivity, mm2/s 21
64
Thermal Shock Resistance, points 12 to 26
7.6 to 13

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
91.1 to 93.3
Copper (Cu), % 91.8 to 95.7
0 to 0.2
Iron (Fe), % 0 to 0.1
0 to 0.2
Lead (Pb), % 0.8 to 1.2
0
Magnesium (Mg), % 0
0.25 to 0.45
Manganese (Mn), % 0
0 to 0.1
Phosphorus (P), % 0.030 to 0.35
0
Silicon (Si), % 0
6.5 to 7.5
Tin (Sn), % 3.5 to 5.8
0
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0 to 0.3
0 to 0.1
Residuals, % 0 to 0.5
0 to 0.15