MakeItFrom.com
Menu (ESC)

C53400 Bronze vs. EN 1.4646 Stainless Steel

C53400 bronze belongs to the copper alloys classification, while EN 1.4646 stainless steel belongs to the iron alloys. There are 20 material properties with values for both materials. Properties with values for just one material (16, in this case) are not shown.

For each property being compared, the top bar is C53400 bronze and the bottom bar is EN 1.4646 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 42
77
Tensile Strength: Ultimate (UTS), MPa 330 to 720
750

Thermal Properties

Latent Heat of Fusion, J/g 200
290
Maximum Temperature: Mechanical, °C 180
910
Melting Completion (Liquidus), °C 1050
1390
Melting Onset (Solidus), °C 950
1340
Specific Heat Capacity, J/kg-K 380
480
Thermal Expansion, µm/m-K 18
17

Otherwise Unclassified Properties

Base Metal Price, % relative 32
13
Density, g/cm3 8.9
7.7
Embodied Carbon, kg CO2/kg material 3.0
2.8
Embodied Energy, MJ/kg 49
41
Embodied Water, L/kg 350
160

Common Calculations

Stiffness to Weight: Axial, points 7.0
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 10 to 22
27
Strength to Weight: Bending, points 12 to 20
24
Thermal Shock Resistance, points 12 to 26
16

Alloy Composition

Carbon (C), % 0
0.020 to 0.1
Chromium (Cr), % 0
17 to 19
Copper (Cu), % 91.8 to 95.7
1.5 to 3.0
Iron (Fe), % 0 to 0.1
59 to 67.3
Lead (Pb), % 0.8 to 1.2
0
Manganese (Mn), % 0
10.5 to 12.5
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0
3.5 to 4.5
Nitrogen (N), % 0
0.2 to 0.3
Phosphorus (P), % 0.030 to 0.35
0 to 0.050
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 3.5 to 5.8
0
Zinc (Zn), % 0 to 0.3
0
Residuals, % 0 to 0.5
0