MakeItFrom.com
Menu (ESC)

C53800 Bronze vs. ASTM A182 Grade F5a

C53800 bronze belongs to the copper alloys classification, while ASTM A182 grade F5a belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C53800 bronze and the bottom bar is ASTM A182 grade F5a.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 2.3
25
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 40
74
Shear Strength, MPa 470
450
Tensile Strength: Ultimate (UTS), MPa 830
710
Tensile Strength: Yield (Proof), MPa 660
520

Thermal Properties

Latent Heat of Fusion, J/g 190
260
Maximum Temperature: Mechanical, °C 160
510
Melting Completion (Liquidus), °C 980
1460
Melting Onset (Solidus), °C 800
1420
Specific Heat Capacity, J/kg-K 360
470
Thermal Conductivity, W/m-K 61
40
Thermal Expansion, µm/m-K 18
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.0
8.2
Electrical Conductivity: Equal Weight (Specific), % IACS 9.3
9.4

Otherwise Unclassified Properties

Base Metal Price, % relative 37
4.5
Density, g/cm3 8.7
7.8
Embodied Carbon, kg CO2/kg material 3.9
1.8
Embodied Energy, MJ/kg 64
24
Embodied Water, L/kg 420
69

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 18
160
Resilience: Unit (Modulus of Resilience), kJ/m3 2020
700
Stiffness to Weight: Axial, points 6.8
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 26
25
Strength to Weight: Bending, points 22
23
Thermal Diffusivity, mm2/s 19
11
Thermal Shock Resistance, points 31
20

Alloy Composition

Carbon (C), % 0
0 to 0.25
Chromium (Cr), % 0
4.0 to 6.0
Copper (Cu), % 85.1 to 86.5
0
Iron (Fe), % 0 to 0.030
91.4 to 95.6
Lead (Pb), % 0.4 to 0.6
0
Manganese (Mn), % 0 to 0.060
0 to 0.6
Molybdenum (Mo), % 0
0.44 to 0.65
Nickel (Ni), % 0 to 0.030
0 to 0.5
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 13.1 to 13.9
0
Zinc (Zn), % 0 to 0.12
0
Residuals, % 0 to 0.2
0