MakeItFrom.com
Menu (ESC)

C53800 Bronze vs. ASTM A387 Grade 12 Steel

C53800 bronze belongs to the copper alloys classification, while ASTM A387 grade 12 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C53800 bronze and the bottom bar is ASTM A387 grade 12 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 2.3
25
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 40
73
Shear Strength, MPa 470
300 to 330
Tensile Strength: Ultimate (UTS), MPa 830
470 to 520
Tensile Strength: Yield (Proof), MPa 660
260 to 310

Thermal Properties

Latent Heat of Fusion, J/g 190
250
Maximum Temperature: Mechanical, °C 160
430
Melting Completion (Liquidus), °C 980
1470
Melting Onset (Solidus), °C 800
1420
Specific Heat Capacity, J/kg-K 360
470
Thermal Conductivity, W/m-K 61
44
Thermal Expansion, µm/m-K 18
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.0
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 9.3
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 37
2.8
Density, g/cm3 8.7
7.8
Embodied Carbon, kg CO2/kg material 3.9
1.6
Embodied Energy, MJ/kg 64
21
Embodied Water, L/kg 420
51

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 18
98 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 2020
180 to 250
Stiffness to Weight: Axial, points 6.8
13
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 26
16 to 18
Strength to Weight: Bending, points 22
17 to 18
Thermal Diffusivity, mm2/s 19
12
Thermal Shock Resistance, points 31
14 to 15

Alloy Composition

Carbon (C), % 0
0.050 to 0.17
Chromium (Cr), % 0
0.8 to 1.2
Copper (Cu), % 85.1 to 86.5
0
Iron (Fe), % 0 to 0.030
97 to 98.2
Lead (Pb), % 0.4 to 0.6
0
Manganese (Mn), % 0 to 0.060
0.4 to 0.65
Molybdenum (Mo), % 0
0.45 to 0.6
Nickel (Ni), % 0 to 0.030
0
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0
0.15 to 0.4
Sulfur (S), % 0
0 to 0.025
Tin (Sn), % 13.1 to 13.9
0
Zinc (Zn), % 0 to 0.12
0
Residuals, % 0 to 0.2
0